Li Chen, Nagasaki Masao, Saito Ayumu, Miyano Satoru
Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
BMC Syst Biol. 2010 Apr 1;4:39. doi: 10.1186/1752-0509-4-39.
With an accumulation of in silico data obtained by simulating large-scale biological networks, a new interest of research is emerging for elucidating how living organism functions over time in cells. Investigating the dynamic features of current computational models promises a deeper understanding of complex cellular processes. This leads us to develop a method that utilizes structural properties of the model over all simulation time steps. Further, user-friendly overviews of dynamic behaviors can be considered to provide a great help in understanding the variations of system mechanisms.
We propose a novel method for constructing and analyzing a so-called active state transition diagram (ASTD) by using time-course simulation data of a high-level Petri net. Our method includes two new algorithms. The first algorithm extracts a series of subnets (called temporal subnets) reflecting biological components contributing to the dynamics, while retaining positive mathematical qualities. The second one creates an ASTD composed of unique temporal subnets. ASTD provides users with concise information allowing them to grasp and trace how a key regulatory subnet and/or a network changes with time. The applicability of our method is demonstrated by the analysis of the underlying model for circadian rhythms in Drosophila.
Building ASTD is a useful means to convert a hybrid model dealing with discrete, continuous and more complicated events to finite time-dependent states. Based on ASTD, various analytical approaches can be applied to obtain new insights into not only systematic mechanisms but also dynamics.
随着通过模拟大规模生物网络获得的计算机模拟数据的积累,对于阐明生物体在细胞中随时间如何发挥功能的研究出现了新的兴趣。研究当前计算模型的动态特征有望更深入地理解复杂的细胞过程。这促使我们开发一种在所有模拟时间步长上利用模型结构特性的方法。此外,可以考虑提供用户友好的动态行为概述,以极大地帮助理解系统机制的变化。
我们提出了一种通过使用高级Petri网的时程模拟数据来构建和分析所谓的活性状态转换图(ASTD)的新方法。我们的方法包括两种新算法。第一种算法提取一系列反映对动力学有贡献的生物成分的子网(称为时间子网),同时保留积极的数学性质。第二种算法创建由独特时间子网组成的ASTD。ASTD为用户提供简洁的信息,使他们能够掌握和追踪关键调节子网和/或网络如何随时间变化。我们通过对果蝇昼夜节律的基础模型进行分析来证明我们方法的适用性。
构建ASTD是将处理离散、连续和更复杂事件的混合模型转换为有限时间相关状态的有用手段。基于ASTD,可以应用各种分析方法来获得不仅关于系统机制而且关于动力学的新见解。