Department of Pediatrics, Research Center-Centre Hospitalier Universitaire Ste-Justine, Montréal, Quebec, Canada.
Am J Physiol Regul Integr Comp Physiol. 2010 Jun;298(6):R1522-30. doi: 10.1152/ajpregu.00807.2009. Epub 2010 Mar 31.
Hypercapnia is regularly observed in chronic lung disease, such as bronchopulmonary dysplasia in preterm infants. Hypercapnia results in increased nitric oxide synthase activity and in vitro formation of nitrates. Neural vasculature of the immature subject is particularly sensitive to nitrative stress. We investigated whether exposure to clinically relevant sustained high CO(2) causes microvascular degeneration in the newborn brain by inducing nitrative stress, and whether this microvascular degeneration has an impact on brain growth. Newborn rat pups were exposed to 10% CO(2) as inspired gas (Pa(CO(2)) = 60-70 mmHg) starting within 24 h of birth until postnatal day 7 (P7). Brains were notably collected at different time points to measure vascular density, determine brain cortical nitrite/nitrate, and trans-arachidonic acids (TAAs; products of nitration) levels as effectors of vessel damage. Chronic exposure of rat pups to high CO(2) (Pa(CO(2)) approximately 65 mmHg) induced a 20% loss in cerebrovascular density at P3 and a 15% decrease in brain mass at P7; at P30, brain mass remained lower in CO(2)-exposed animals. Within 24 h of exposure to CO(2), brain eNOS expression and production of nitrite/nitrate doubled, lipid nitration products (TAAs) increased, and protein nitration (3-nitrotyrosine immunoreactivity) was also coincidently augmented on brain microvessels (lectin positive). Intracerebroventricular injection of TAAs (10 microM) replicated cerebrovascular degeneration. Treatment of rat pups with NOS inhibitor (L-N(omega)-nitroarginine methyl ester) or a peroxynitrite decomposition catalyst (FeTPPS) prevented hypercapnia-induced microvascular degeneration and preserved brain mass. Cytotoxic effects of high CO(2) were reproduced in vitro/ex vivo on cultured endothelial cells and sprouting microvessels. In summary, hypercapnia at values frequently observed in preterm infants with chronic lung disease results in increased nitrative stress, which leads to cerebral cortical microvascular degeneration and curtails brain growth.
高碳酸血症在慢性肺部疾病中经常被观察到,如早产儿的支气管肺发育不良。高碳酸血症导致一氧化氮合酶活性增加,并在体外形成硝酸盐。未成熟对象的神经血管对硝化应激特别敏感。我们研究了在出生后 24 小时内,通过诱导硝化应激,暴露于临床相关的持续高二氧化碳中是否会导致新生脑中的微血管退化,以及这种微血管退化是否会对大脑生长产生影响。新生大鼠在出生后立即暴露于 10%的 CO2 作为吸入气体(Pa(CO2)= 60-70mmHg),直到出生后第 7 天(P7)。在不同的时间点收集大脑,以测量血管密度,确定大脑皮质亚硝酸盐/硝酸盐和反式花生四烯酸(TAA;血管损伤的产物)水平。新生大鼠慢性暴露于高 CO2(Pa(CO2)约 65mmHg)可导致 P3 时脑血管密度降低 20%,P7 时大脑质量降低 15%;在 P30 时,暴露于 CO2 的动物的大脑质量仍然较低。在暴露于 CO2 的 24 小时内,大脑内皮型一氧化氮合酶表达和亚硝酸盐/硝酸盐的产生增加一倍,脂质硝化产物(TAA)增加,脑微血管上的蛋白质硝化(3-硝基酪氨酸免疫反应性)也同时增加(凝集素阳性)。脑室内注射 TAA(10 microM)可复制脑血管退化。用一氧化氮合酶抑制剂(L-N(ω)-硝基精氨酸甲酯)或过氧亚硝酸盐分解催化剂(FeTPPS)治疗新生大鼠可防止高碳酸血症诱导的微血管退化并维持大脑质量。高 CO2 的细胞毒性作用在体外/离体培养的内皮细胞和发芽的微血管上重现。总之,慢性肺部疾病的早产儿中经常观察到的高碳酸血症导致硝化应激增加,从而导致大脑皮质微血管退化并限制大脑生长。