Suppr超能文献

牛链球菌在低pH值下对乙酸的抗性:细胞内pH值与阴离子积累之间的关系。

Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation.

作者信息

Russell J B

机构信息

Agricultural Research Service, U.S. Department of Agriculture, Ithaca, New York 14853.

出版信息

Appl Environ Microbiol. 1991 Jan;57(1):255-9. doi: 10.1128/aem.57.1.255-259.1991.

Abstract

Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grow at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). YATP (grams of cells per mole of ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [14C]acetate and [14C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

摘要

牛链球菌JB1是一种耐酸的瘤胃细菌,能够在pH值为6.7至4.5的环境中生长,100 mM的乙酸盐对其生长速率或跨细胞膜的质子动力几乎没有影响。当牛链球菌在pH 5.2的葡萄糖限制恒化器中生长时,添加乙酸钠(高达100 mM)对细菌蛋白质的产生几乎没有影响。在较高浓度的乙酸钠(100至360 mM)下,细菌蛋白质的产生下降,但这种下降在很大程度上可以通过发酵产物的转变(从乙酸盐、甲酸盐和乙醇的产生转变为乳酸的产生)以及ATP产生的下降(每摩尔葡萄糖产生3个ATP,而每摩尔葡萄糖产生2个ATP)来解释。即使在高浓度乙酸盐的情况下,YATP(每摩尔ATP产生的细胞克数)也没有显著下降。添加100 mM乙酸钠的培养物根据亨德森-哈塞尔巴尔赫方程吸收[14C]乙酸盐和[14C]苯甲酸盐,并给出了相似的细胞内pH估计值。随着细胞外pH值下降,牛链球菌允许其细胞内pH值降低,并在细胞膜上维持相对恒定的pH梯度(0.9个单位)。细胞内pH值的降低阻止了牛链球菌积累大量的乙酸根阴离子。基于这些结果,乙酸盐似乎并没有起到解偶联剂的作用。其他细菌在低pH值下对挥发性脂肪酸的敏感性最容易通过高跨膜pH梯度和阴离子积累来解释。

相似文献

1
Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation.
Appl Environ Microbiol. 1991 Jan;57(1):255-9. doi: 10.1128/aem.57.1.255-259.1991.
2
Intracellular pH of acid-tolerant ruminal bacteria.
Appl Environ Microbiol. 1991 Nov;57(11):3383-4. doi: 10.1128/aem.57.11.3383-3384.1991.
3
Differential toxic effects of lactate and acetate on the metabolism of Streptococcus mutans and Streptococcus sanguis.
Oral Microbiol Immunol. 1996 Dec;11(6):412-9. doi: 10.1111/j.1399-302x.1996.tb00204.x.
4
Non-proton-motive-force-dependent sodium efflux from the ruminal bacterium Streptococcus bovis: bound versus free pools.
Appl Environ Microbiol. 1989 Oct;55(10):2664-8. doi: 10.1128/aem.55.10.2664-2668.1989.
6
Regulation of lactate production in Streptococcus bovis: A spiraling effect that contributes to rumen acidosis.
J Dairy Sci. 1985 Jul;68(7):1712-21. doi: 10.3168/jds.s0022-0302(85)81017-1.
7
The ability of Escherichia coli O157:H7 to decrease its intracellular pH and resist the toxicity of acetic acid.
Microbiology (Reading). 1997 Apr;143 ( Pt 4):1175-1180. doi: 10.1099/00221287-143-4-1175.
8
Effects of thymol on ruminal microorganisms.
Curr Microbiol. 2000 Nov;41(5):336-40. doi: 10.1007/s002840010145.
10
The effect of pH on the growth and metabolism of Streptococcus bovis in continuous culture.
J Appl Bacteriol. 1986 Sep;61(3):201-8. doi: 10.1111/j.1365-2672.1986.tb04277.x.

引用本文的文献

2
Distinct Metabolic Flow in Response to Temperature in Thermotolerant Kluyveromyces marxianus.
Appl Environ Microbiol. 2022 Mar 22;88(6):e0200621. doi: 10.1128/AEM.02006-21. Epub 2022 Jan 26.
3
Two-step production of anti-inflammatory soluble factor by Lactobacillus reuteri CRL 1098.
PLoS One. 2018 Jul 6;13(7):e0200426. doi: 10.1371/journal.pone.0200426. eCollection 2018.
4
Antibacterial Activity of Unconjugated and Conjugated Bile Salts on .
Front Microbiol. 2017 Aug 23;8:1581. doi: 10.3389/fmicb.2017.01581. eCollection 2017.
5
Adaptation in : From Stress to Disease.
Front Microbiol. 2016 Oct 4;7:1550. doi: 10.3389/fmicb.2016.01550. eCollection 2016.
6
Uncoupling Environmental pH and Intrabacterial Acidification from Pyrazinamide Susceptibility in Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2015 Dec;59(12):7320-6. doi: 10.1128/AAC.00967-15. Epub 2015 Sep 14.
7
Improving the expression of recombinant proteins in E. coli BL21 (DE3) under acetate stress: an alkaline pH shift approach.
PLoS One. 2014 Nov 17;9(11):e112777. doi: 10.1371/journal.pone.0112777. eCollection 2014.
8
Influence of polysorbate 80 and cyclopropane fatty acid synthase activity on lactic acid production by Lactobacillus casei ATCC 334 at low pH.
J Ind Microbiol Biotechnol. 2014 Mar;41(3):545-53. doi: 10.1007/s10295-013-1391-2. Epub 2013 Dec 27.
9
Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress.
J Bacteriol. 2010 May;192(9):2445-58. doi: 10.1128/JB.01618-09. Epub 2010 Mar 5.
10
Effect of organic acids on Escherichia coli O157:H7 and Staphylococcus aureus contaminated meat.
Open Microbiol J. 2009 Aug 4;3:121-7. doi: 10.2174/1874285800903010121.

本文引用的文献

1
Selection of Protease-Positive and Protease-Negative Variants of Streptococcus cremoris.
Appl Environ Microbiol. 1987 Feb;53(2):309-14. doi: 10.1128/aem.53.2.309-314.1987.
2
Uncoupling by Acetic Acid Limits Growth of and Acetogenesis by Clostridium thermoaceticum.
Appl Environ Microbiol. 1984 Dec;48(6):1134-9. doi: 10.1128/aem.48.6.1134-1139.1984.
3
Substrate preferences in rumen bacteria: evidence of catabolite regulatory mechanisms.
Appl Environ Microbiol. 1978 Aug;36(2):319-29. doi: 10.1128/aem.36.2.319-329.1978.
4
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
5
FRUCTOSE-1,6-DIPHOSPHATE REQUIREMENT OF STREPTOCOCCAL LACTIC DEHYDROGENASES.
Science. 1964 Nov 6;146(3645):775-7. doi: 10.1126/science.146.3645.775.
7
Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture.
Appl Environ Microbiol. 1980 Mar;39(3):604-10. doi: 10.1128/aem.39.3.604-610.1980.
8
Basis for the exclusion of Escherichia coli from the rumen ecosystem.
Appl Microbiol. 1965 Nov;13(6):918-24. doi: 10.1128/am.13.6.918-924.1965.
10
Regulation of solute transport in streptococci by external and internal pH values.
Microbiol Rev. 1987 Dec;51(4):498-508. doi: 10.1128/mr.51.4.498-508.1987.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验