Folch R, Alvarez-Lacalle E, Ortín J, Casademunt J
Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. dels Països Catalans 26, E-43007 Tarragona, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 2):056305. doi: 10.1103/PhysRevE.80.056305. Epub 2009 Nov 16.
Viscous fingering dynamics driven by centrifugal forcing is studied for arbitrary viscosity contrast. Theoretical methods, including exact solutions, and numerics based on a phase-field approach are used. Both confirm that pinch-off singularities in patterns originated from the centrifugally driven instability may occur spontaneously and be inherent to the two-dimensional Hele-Shaw dynamics. They are systematically more frequent for lower viscosity contrasts consistently with experimental evidence. The analytical insights provide an interpretation of this fact in terms of the asymptotic matching of the different regions of the fingering patterns. The phase-field numerical scheme is shown to be particularly adequate to elucidate the existence of finite-time singularities through the dependence of the singularity time on the interface thickness, in particular for varying viscosity contrast.
针对任意粘度比,研究了由离心力驱动的粘性指进动力学。使用了理论方法,包括精确解,以及基于相场方法的数值计算。两者均证实,由离心驱动不稳定性产生的图案中的 pinch-off 奇点可能会自发出现,并且是二维 Hele-Shaw 动力学所固有的。与实验证据一致,对于较低的粘度比,它们系统地更频繁出现。分析见解从指进图案不同区域的渐近匹配角度对这一事实进行了解释。相场数值方案被证明特别适合通过奇点时间对界面厚度的依赖性来阐明有限时间奇点的存在,特别是对于变化的粘度比。