Sridhar S, Subramanian Kandaswamy
Raman Research Institute, Sadashivanagar, Bangalore, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Dec;80(6 Pt 2):066315. doi: 10.1103/PhysRevE.80.066315. Epub 2009 Dec 23.
We study large-scale dynamo action due to turbulence in the presence of a linear shear flow. Our treatment is quasilinear and equivalent to the standard "first-order smoothing approximation." However it is non perturbative in the shear strength. We first derive an integrodifferential equation for the evolution of the mean magnetic field, by systematic use of the shearing coordinate transformation and the Galilean invariance of the linear shear flow. We show that, for nonhelical turbulence, the time evolution of the cross-shear components of the mean field do not depend on any other components excepting themselves; this is valid for any Galilean-invariant velocity field, independent of its dynamics. Hence, to all orders in the shear parameter, there is no shear-current-type effect for non helical turbulence in a linear shear flow in quasilinear theory in the limit of zero resistivity. We then develop a systematic approximation of the integro-differential equation for the case when the mean magnetic field varies slowly compared to the turbulence correlation time. For nonhelical turbulence, the resulting partial differential equations can again be solved by making a shearing coordinate transformation in Fourier space. The resulting solutions are in the form of shearing waves, labeled by the wave number in the sheared coordinates. These shearing waves can grow at early and intermediate times but are expected to decay in the long time limit.
我们研究了在存在线性剪切流的情况下,由湍流引起的大规模发电机作用。我们的处理方法是准线性的,等同于标准的“一阶平滑近似”。然而,它在剪切强度方面是非微扰的。我们首先通过系统地使用剪切坐标变换和线性剪切流的伽利略不变性,推导出平均磁场演化的积分微分方程。我们表明,对于非螺旋湍流,平均场的跨剪切分量的时间演化除了自身之外不依赖于任何其他分量;这对于任何伽利略不变速度场都是有效的,与它的动力学无关。因此,在零电阻率极限下的准线性理论中,对于线性剪切流中的非螺旋湍流,在剪切参数的所有阶次上都不存在剪切电流型效应。然后,对于平均磁场变化比湍流相关时间慢的情况,我们对积分微分方程进行了系统的近似。对于非螺旋湍流,通过在傅里叶空间中进行剪切坐标变换,再次可以求解得到的偏微分方程。得到的解是剪切波的形式,由剪切坐标中的波数标记。这些剪切波在早期和中期可以增长,但预计在长时间极限下会衰减。