Kim Seung-Yeon
School of Liberal Arts and Sciences, Chungju National University, Chungju 380-702, Korea.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 1):031120. doi: 10.1103/PhysRevE.81.031120. Epub 2010 Mar 22.
The distributions of the partition function zeros in the complex a=e2betaJ1 plane of the square-lattice Ising model with nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions are investigated as a function of R=J2/J1. Starting from the well-known two-circle distribution of the zeros a=+/-1+sqrt[2]eitheta for R=0 , finally the partition function zeros lie on the unit circle a=eitheta for R=infinity . Between these two ends, the changes in the zero distributions are described. Using the partition function zeros, the critical point ac(R) and the thermal scaling exponent yt(R) are estimated for the Ising ferromagnet (equivalently, antiferromagnet) and superantiferromagnet. For the special case of R=1/2 , the possible implications of the zero distributions are also discussed.
研究了具有最近邻(J1)和次近邻(J2)相互作用的正方晶格伊辛模型在复平面a = e2βJ1中配分函数零点的分布随R = J2/J1的变化情况。从R = 0时零点a = ±1 + √2eiθ的著名双圆分布开始,最终当R = ∞时配分函数零点位于单位圆a = eiθ上。描述了在这两个端点之间零点分布的变化。利用配分函数零点,对伊辛铁磁体(等效地,反铁磁体)和超反铁磁体的临界点ac(R)和热标度指数yt(R)进行了估计。对于R = 1/2的特殊情况,还讨论了零点分布可能的影响。