Suppr超能文献

平行板间聚合物熔体流动的多尺度建模与模拟

Multiscale modeling and simulation for polymer melt flows between parallel plates.

作者信息

Yasuda Shugo, Yamamoto Ryoichi

机构信息

Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 2):036308. doi: 10.1103/PhysRevE.81.036308. Epub 2010 Mar 8.

Abstract

The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for omegatauR < approximately 1 , and the crossover between the liquidlike and solidlike regime takes place around omegataualpha approximately equal 1 (where omega is the angular frequency of the plate and tauR and taualpha are Rouse and alpha relaxation time, respectively).

摘要

采用分子动力学和计算流体动力学相结合的方法,模拟了由具有十个珠子的短链组成的聚合物熔体在平行板间的流动行为。解决了三个问题:恒定剪切应力下的蠕变运动及其去除应力后的恢复运动、压力驱动流动以及快速振荡平板中的流动。在蠕变/恢复问题中,展示了蠕变运动中的延迟弹性变形和恢复运动中的明显弹性行为。由于剪切变稀,压力驱动流动中熔体的速度分布与牛顿流体的速度分布有很大不同。随着压力梯度增加和温度降低,熔体的速度梯度在靠近平板处变得更陡,在平板中间处变得更平缓。在快速振荡平板中,由于熔体的剪切变稀,熔体的粘性边界层比牛顿流体的粘性边界层薄得多。根据局部德博拉数,在振荡平板上形成了三种不同的流变状态,即粘性流体、粘弹性液体和粘弹性固体状态。在ωτR<约1的区域,熔体表现为粘性流体,在ωτα≈1(其中ω是平板的角频率,τR和τα分别是Rouse和α松弛时间)附近发生类液体和类固体状态之间的转变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验