Instituto de Fisica, Universidade Federal do Rio de Janeiro Cx.P. 68.528, 21941-972 Rio de Janeiro RJ, Brazil.
Phys Rev Lett. 2010 Feb 12;104(6):066406. doi: 10.1103/PhysRevLett.104.066406. Epub 2010 Feb 11.
One of the major challenges in realizing antiferromagnetic and superfluid phases in optical lattices is the ability to cool fermions. We determine constraints on the entropy for observing these phases in two-dimensional Hubbard models using determinantal quantum Monte Carlo simulations. We find that an entropy per particle approximately = ln2 is sufficient to observe the insulating gap in the repulsive Hubbard model at half-filling, or the pairing pseudogap in the attractive case. Observing antiferromagnetic correlations or superfluidity in 2D systems requires a further reduction in entropy by a factor of 3 or more. In contrast with higher dimensions, we find that adiabatic cooling is not useful to achieve the required low temperatures. We also show that double-occupancy measurements are useful for thermometry for temperatures greater than the nearest-neighbor hopping energy.
在光学晶格中实现反铁磁和超流相的主要挑战之一是冷却费米子的能力。我们使用行列式量子蒙特卡罗模拟确定了在二维 Hubbard 模型中观察这些相的熵约束。我们发现,在半填充时,每个粒子的熵大约为 ln2 足以观察到排斥 Hubbard 模型的绝缘能隙,或者在吸引情况下观察到配对赝能隙。在二维系统中观察反铁磁相关或超流性需要进一步将熵降低 3 倍或更多。与更高维度相比,我们发现绝热冷却对于达到所需的低温并不有用。我们还表明,对于大于最近邻跃迁能量的温度,双占据测量对于测温是有用的。