Suppr超能文献

肌球蛋白-ADP 状态、头部间协作和骨骼肌的力-速度关系。

Actomyosin-ADP states, interhead cooperativity, and the force-velocity relation of skeletal muscle.

机构信息

School of Natural Sciences, Linnaeus University, Kalmar, Sweden.

出版信息

Biophys J. 2010 Apr 7;98(7):1237-46. doi: 10.1016/j.bpj.2009.12.4285.

Abstract

Despite intense efforts to elucidate the molecular mechanisms that determine the maximum shortening velocity and the shape of the force-velocity relationship in striated muscle, our understanding of these mechanisms remains incomplete. Here, this issue is addressed by means of a four-state cross-bridge model with significant explanatory power for both shortening and lengthening contractions. Exploration of the parameter space of the model suggests that an actomyosin-ADP state (AM( *)ADP) that is separated from the actual ADP release step by a strain-dependent isomerization is important for determining both the maximum shortening velocity and the shape of the force-velocity relationship. The model requires a velocity-dependent, cross-bridge attachment rate to account for certain experimental findings. Of interest, the velocity dependence for shortening contraction is similar to that for population of the AM( *)ADP state (with a velocity-independent attachment rate). This accords with the idea that attached myosin heads in the AM( *)ADP state position the partner heads for rapid attachment to the next site along actin, corresponding to the apparent increase in attachment rate in the model.

摘要

尽管人们已经付出了巨大努力来阐明决定横纹肌最大缩短速度和力-速度关系形状的分子机制,但我们对这些机制的理解仍然不完整。在这里,通过一个具有重要解释力的四状态交联桥模型来解决这个问题,该模型可用于缩短和延长收缩。对模型参数空间的探索表明,一种与实际 ADP 释放步骤分离的、依赖应变的肌球蛋白-ADP 状态 (AM(* )ADP) 对于确定最大缩短速度和力-速度关系的形状非常重要。该模型需要一个速度依赖的交联桥附着速率来解释某些实验发现。有趣的是,缩短收缩的速度依赖性类似于 AM(* )ADP 状态的种群速度依赖性(具有速度独立的附着速率)。这与附着在 AM(* )ADP 状态下的肌球蛋白头部为快速附着到沿肌动蛋白的下一个位点定位伴侣头部的想法一致,这与模型中附着速率的明显增加相对应。

相似文献

1
Actomyosin-ADP states, interhead cooperativity, and the force-velocity relation of skeletal muscle.
Biophys J. 2010 Apr 7;98(7):1237-46. doi: 10.1016/j.bpj.2009.12.4285.
2
Drug effect unveils inter-head cooperativity and strain-dependent ADP release in fast skeletal actomyosin.
J Biol Chem. 2009 Aug 21;284(34):22926-37. doi: 10.1074/jbc.M109.019232. Epub 2009 Jun 11.
3
A model of muscle contraction based on the Langevin equation with actomyosin potentials.
Comput Methods Biomech Biomed Engin. 2017 Feb;20(3):273-283. doi: 10.1080/10255842.2016.1215440. Epub 2016 Jul 29.
5
A model of the release of myosin heads from actin in rapidly contracting muscle fibers.
Biophys J. 1994 Mar;66(3 Pt 1):778-88. doi: 10.1016/s0006-3495(94)80854-9.
6
Mechanism of nucleotide binding to actomyosin VI: evidence for allosteric head-head communication.
J Biol Chem. 2004 Sep 10;279(37):38608-17. doi: 10.1074/jbc.M403504200. Epub 2004 Jul 6.
7
Mathematical simulation of muscle cross-bridge cycle and force-velocity relationship.
Biophys J. 2006 Nov 15;91(10):3653-63. doi: 10.1529/biophysj.106.092510. Epub 2006 Aug 25.
8
Adenosine diphosphate and strain sensitivity in myosin motors.
Philos Trans R Soc Lond B Biol Sci. 2004 Dec 29;359(1452):1867-77. doi: 10.1098/rstb.2004.1560.
9
Physical driving force of actomyosin motility based on the hydration effect.
Cytoskeleton (Hoboken). 2017 Dec;74(12):512-527. doi: 10.1002/cm.21417. Epub 2017 Nov 17.

引用本文的文献

1
Mechanistic insights into effects of the cardiac myosin activator omecamtiv mecarbil from mechanokinetic modelling.
Front Physiol. 2025 Apr 17;16:1576245. doi: 10.3389/fphys.2025.1576245. eCollection 2025.
3
Multistep orthophosphate release tunes actomyosin energy transduction.
Nat Commun. 2022 Aug 5;13(1):4575. doi: 10.1038/s41467-022-32110-9.
4
Critical Evaluation of Current Hypotheses for the Pathogenesis of Hypertrophic Cardiomyopathy.
Int J Mol Sci. 2022 Feb 16;23(4):2195. doi: 10.3390/ijms23042195.
8
Switch-1 instability at the active site decouples ATP hydrolysis from force generation in myosin II.
Cytoskeleton (Hoboken). 2021 Jan;78(1):3-13. doi: 10.1002/cm.21650. Epub 2021 Jan 11.
10
The Location and Rate of the Phosphate Release Step in the Muscle Cross-Bridge Cycle.
Biophys J. 2020 Oct 20;119(8):1501-1512. doi: 10.1016/j.bpj.2020.09.004. Epub 2020 Sep 15.

本文引用的文献

1
Drug effect unveils inter-head cooperativity and strain-dependent ADP release in fast skeletal actomyosin.
J Biol Chem. 2009 Aug 21;284(34):22926-37. doi: 10.1074/jbc.M109.019232. Epub 2009 Jun 11.
3
Non-linear myofilament elasticity in frog intact muscle fibres.
J Exp Biol. 2009 Apr;212(Pt 8):1115-9. doi: 10.1242/jeb.020982.
4
Mechanistic role of movement and strain sensitivity in muscle contraction.
Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6140-5. doi: 10.1073/pnas.0812487106. Epub 2009 Mar 26.
6
Towards a unified theory of muscle contraction. I: foundations.
Ann Biomed Eng. 2008 Oct;36(10):1624-40. doi: 10.1007/s10439-008-9536-6. Epub 2008 Jul 19.
7
Toward a unified theory of muscle contraction. II: predictions with the mean-field approximation.
Ann Biomed Eng. 2008 Aug;36(8):1353-71. doi: 10.1007/s10439-008-9514-z. Epub 2008 May 28.
8
Skeletal muscle resists stretch by rapid binding of the second motor domain of myosin to actin.
Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):20114-9. doi: 10.1073/pnas.0707626104. Epub 2007 Dec 6.
10
Sarcomere lattice geometry influences cooperative myosin binding in muscle.
PLoS Comput Biol. 2007 Jul;3(7):e115. doi: 10.1371/journal.pcbi.0030115.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验