Cleveland Clinic, Cleveland, OH 44195, USA.
IEEE Trans Neural Syst Rehabil Eng. 2010 Apr;18(2):97-106. doi: 10.1109/TNSRE.2010.2047173. Epub 2010 Apr 5.
Voluntary muscle fatigue is a progressive process. A recent study demonstrated muscle fatigue-induced weakening of functional corticomuscular coupling measured by coherence between the brain [electroencephalogram (EEG)] and muscle [electromyogram (EMG)] signals after a relatively long-duration muscle contraction. Comparing the EEG-EMG coherence before versus after fatigue or between data of two long-duration time blocks is not adequate to reveal the dynamic nature of the fatigue process. The purpose of this study was to address this issue by quantifying single-trial EEG-EMG coherence and EEG, EMG power based on wavelet transform. Eight healthy subjects performed 200 maximal intermittent handgrip contractions in a single session with handgrip force, EEG and EMG signals acquired simultaneously. The EEG and EMG data during each 2-s handgrip was subjected to single trial EEG-EMG wavelet energy spectrum and coherence computation. The EEG-EMG coherence and energy spectrum at beta (15 ~ 35 Hz) and gamma (35-50 Hz) frequency bands were statistically analyzed in 2-block (75 trials per block), 5-block (30 trials/block), and 10-block (15 trials/block) data settings. The energy of both the EEG and EMG signals decreased significantly with muscle fatigue. The EEG-EMG coherence had a significant reduction for the 2-block comparison. More detailed dynamical changing and inter-subject variation of the EEG-EMG coherence and energy were revealed by 5- and 10-block comparisons. These results show feasibility of wavelet transform-based measurement of the EEG-EMG coherence and corresponding energy based on single-trial data, which provides extra information to demonstrate a time course of dynamic adaptations of the functional corticomuscular coupling, as well as brain and muscle signals during muscle fatigue.
自愿性肌肉疲劳是一个渐进的过程。最近的一项研究表明,在相对长时间的肌肉收缩后,大脑[脑电图(EEG)]和肌肉[肌电图(EMG)]信号之间的功能皮质肌肉耦合的相干性会因肌肉疲劳而减弱。比较疲劳前后或两个长时间时程数据块之间的 EEG-EMG 相干性不足以揭示疲劳过程的动态性质。本研究的目的是通过量化基于小波变换的单试 EEG-EMG 相干性和 EEG、EMG 功率来解决这个问题。8 名健康受试者在一次会议中进行了 200 次最大间歇性握力收缩,同时采集握力、EEG 和 EMG 信号。对每个 2 秒握力期间的 EEG 和 EMG 数据进行单试 EEG-EMG 小波能谱和相干性计算。在 2 块(每块 75 次试验)、5 块(每块 30 次试验)和 10 块(每块 15 次试验)数据设置中,对β(1535 Hz)和γ(3550 Hz)频段的 EEG-EMG 相干性和能谱进行了统计学分析。随着肌肉疲劳,EEG 和 EMG 信号的能量显著降低。对于 2 块比较,EEG-EMG 相干性有显著降低。通过 5 块和 10 块比较,揭示了 EEG-EMG 相干性和能量的更详细的动态变化和个体间变化。这些结果表明,基于小波变换的单试数据测量 EEG-EMG 相干性和相应能量是可行的,它提供了额外的信息来证明功能皮质肌肉耦合的动态适应以及肌肉疲劳期间大脑和肌肉信号的时间过程。