Neurological Clinic and Institute of Applied Physiology, University of Ulm, Ulm, 89081, Germany.
Brain. 2010 May;133(Pt 5):1403-14. doi: 10.1093/brain/awq057. Epub 2010 Apr 5.
Many idiopathic epilepsy syndromes have a characteristic age dependence, the underlying molecular mechanisms of which are largely unknown. Here we propose a mechanism that can explain that epileptic spells in benign familial neonatal-infantile seizures occur almost exclusively during the first days to months of life. Benign familial neonatal-infantile seizures are caused by mutations in the gene SCN2A encoding the voltage-gated Na(+) channel Na(V)1.2. We identified two novel SCN2A mutations causing benign familial neonatal-infantile seizures and analysed the functional consequences of these mutations in a neonatal and an adult splice variant of the human Na(+) channel Na(V)1.2 expressed heterologously in tsA201 cells together with beta1 and beta2 subunits. We found significant gating changes leading to a gain-of-function, such as an increased persistent Na(+) current, accelerated recovery from fast inactivation or altered voltage-dependence of steady-state activation. Those were restricted to the neonatal splice variant for one mutation, but more pronounced for the adult form for the other, suggesting that a differential developmental splicing does not provide a general explanation for seizure remission. We therefore analysed the developmental expression of Na(V)1.2 and of another voltage-gated Na(+) channel, Na(V)1.6, using immunohistochemistry and real-time reverse transcription-polymerase chain reaction in mouse brain slices. We found that Na(V)1.2 channels are expressed early in development at axon initial segments of principal neurons in the hippocampus and cortex, but their expression is diminished and they are gradually replaced as the dominant channel type by Na(V)1.6 during maturation. This finding provides a plausible explanation for the transient expression of seizures that occur due to a gain-of-function of mutant Na(V)1.2 channels.
许多特发性癫痫综合征具有特征性的年龄依赖性,但其潜在的分子机制在很大程度上尚不清楚。在这里,我们提出了一种机制,可以解释良性家族性新生儿-婴儿癫痫发作中的癫痫发作几乎仅发生在生命的最初几天到几个月内。良性家族性新生儿-婴儿癫痫是由编码电压门控 Na(+)通道 Na(V)1.2 的基因 SCN2A 的突变引起的。我们鉴定了导致良性家族性新生儿-婴儿癫痫的两个新的 SCN2A 突变,并分析了这些突变在异源表达于 tsA201 细胞中的人类 Na(+)通道 Na(V)1.2 的新生儿和成人剪接变异体中的功能后果,以及β1和β2亚基。我们发现了导致功能获得的显著门控变化,例如持续的 Na(+)电流增加、快速失活的恢复加速或稳态激活的电压依赖性改变。这些变化仅对一种突变的新生剪接变体受限,但对另一种突变的成人形式更为明显,这表明差异发育剪接并不能为癫痫缓解提供一般解释。因此,我们使用免疫组织化学和实时逆转录聚合酶链反应在小鼠脑切片中分析了 Na(V)1.2 和另一种电压门控 Na(+)通道 Na(V)1.6 的发育表达。我们发现 Na(V)1.2 通道在海马和皮质的主神经元的轴突起始段在发育早期表达,但它们的表达减少,并随着成熟过程中 Na(V)1.6 成为主要通道类型而逐渐被取代。这一发现为由于突变 Na(V)1.2 通道的功能获得而导致的癫痫发作的短暂表达提供了一个合理的解释。