The Centre for Integrative Physiology, The University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom.
J Neurosci. 2010 Apr 7;30(14):4857-67. doi: 10.1523/JNEUROSCI.6065-09.2010.
Mutations in SPTBN2, the gene encoding beta-III spectrin, cause spinocerebellar ataxia type 5 in humans (SCA5), a neurodegenerative disorder resulting in loss of motor coordination. How these mutations give rise to progressive ataxia and what the precise role beta-III spectrin plays in normal cerebellar physiology are unknown. We developed a mouse lacking full-length beta-III spectrin and found that homozygous mice reproduced features of SCA5 including gait abnormalities, tremor, deteriorating motor coordination, Purkinje cell loss, and cerebellar atrophy (molecular layer thinning). In vivo analysis reveals an age-related reduction in simple spike firing rate in surviving beta-III(-/-) Purkinje cells, whereas in vitro studies show these neurons to have reduced spontaneous firing, smaller sodium currents, and dysregulation of glutamatergic neurotransmission. Our data suggest an early loss of EAAT4- (protein interactor of beta-III spectrin) and a subsequent loss of GLAST-mediated uptake may play a role in neuronal pathology. These findings implicate a loss of beta-III spectrin function in SCA5 pathogenesis and indicate that there are at least two physiological effects of beta-III spectrin loss that underpin a progressive loss of inhibitory cerebellar output, namely an intrinsic Purkinje cell membrane defect due to reduced sodium currents and alterations in glutamate signaling.
突变 SPTBN2 基因,编码β-III spectrin,导致人类脊髓小脑共济失调 5 型(SCA5),这是一种神经退行性疾病,导致运动协调丧失。这些突变如何导致进行性共济失调,以及β-III spectrin 在正常小脑生理学中的精确作用尚不清楚。我们开发了一种缺乏全长β-III spectrin 的小鼠,发现纯合子小鼠再现了 SCA5 的特征,包括步态异常、震颤、运动协调恶化、浦肯野细胞丢失和小脑萎缩(分子层变薄)。体内分析显示,存活的β-III(-/-)浦肯野细胞中简单峰发放率随年龄相关降低,而体外研究表明这些神经元自发放电减少、钠电流减小以及谷氨酸能神经传递失调。我们的数据表明,早期 EAAT4-(β-III spectrin 的蛋白相互作用物)的丢失以及随后的 GLAST 介导的摄取丢失可能在神经元病理学中起作用。这些发现表明β-III spectrin 功能丧失在 SCA5 发病机制中起作用,并表明β-III spectrin 丧失至少有两种生理效应,这是抑制性小脑输出进行性丧失的基础,即由于钠电流减少和谷氨酸信号改变导致的浦肯野细胞膜缺陷。