Suppr超能文献

微血管对心血管危险因素的反应。

Microvascular responses to cardiovascular risk factors.

机构信息

Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.

出版信息

Microcirculation. 2010 Apr;17(3):192-205. doi: 10.1111/j.1549-8719.2009.00015.x.

Abstract

Hypertension, hypercholesterolemia, diabetes, and obesity are among a growing list of conditions that have been designated as major risk factors for cardiovascular disease (CVD). While CVD risk factors are well known to enhance the development of atherosclerotic lesions in large arteries, there is also evidence that the structure and function of microscopic blood vessels can be profoundly altered by these conditions. The diverse responses of the microvasculature to CVD risk factors include oxidative stress, enhanced leukocyte- and platelet-endothelial cell adhesion, impaired endothelial barrier function, altered capillary proliferation, enhanced thrombosis, and vasomotor dysfunction. Emerging evidence indicates that a low-grade systemic inflammatory response that results from risk factor-induced cell activation and cell-cell interactions may underlie the phenotypic changes induced by risk factor exposure. A consequence of the altered microvascular phenotype and systemic inflammatory response is an enhanced vulnerability of tissues to the deleterious effects of secondary oxidative and inflammatory stresses, such as ischemia and reperfusion. Future efforts to develop therapies that prevent the harmful effects of risk factor-induced inflammation should focus on the microcirculation.

摘要

高血压、高胆固醇血症、糖尿病和肥胖症等越来越多的疾病已被确定为心血管疾病 (CVD) 的主要危险因素。虽然众所周知,CVD 危险因素会增强大动脉粥样硬化病变的发展,但也有证据表明,这些条件会严重改变微血管的结构和功能。微血管对 CVD 危险因素的反应多种多样,包括氧化应激、白细胞和血小板内皮细胞黏附增强、内皮屏障功能受损、毛细血管增殖改变、血栓形成增强和血管舒缩功能障碍。新出现的证据表明,危险因素引起的细胞激活和细胞间相互作用导致的低度全身性炎症反应可能是危险因素暴露引起的表型变化的基础。微血管表型和全身性炎症反应的改变的后果是组织对继发性氧化和炎症应激(如缺血再灌注)的有害影响的易感性增强。未来开发预防危险因素引起的炎症有害影响的治疗方法的努力应集中在微循环上。

相似文献

1
Microvascular responses to cardiovascular risk factors.
Microcirculation. 2010 Apr;17(3):192-205. doi: 10.1111/j.1549-8719.2009.00015.x.
2
Cerebral microvascular responses to hypercholesterolemia: roles of NADPH oxidase and P-selectin.
Circ Res. 2004 Feb 6;94(2):239-44. doi: 10.1161/01.RES.0000111524.05779.60. Epub 2003 Dec 11.
3
Angiotensin II type 1 receptor signaling contributes to platelet-leukocyte-endothelial cell interactions in the cerebral microvasculature.
Am J Physiol Heart Circ Physiol. 2007 May;292(5):H2306-15. doi: 10.1152/ajpheart.00601.2006. Epub 2007 Jan 12.
4
Pathophysiology of ischaemia-reperfusion injury.
J Pathol. 2000 Feb;190(3):255-66. doi: 10.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6.
6
Leukocyte recruitment and ischemic brain injury.
Neuromolecular Med. 2010 Jun;12(2):193-204. doi: 10.1007/s12017-009-8074-1. Epub 2009 Jul 5.
9
Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide.
Free Radic Biol Med. 2002 Oct 15;33(8):1026-36. doi: 10.1016/s0891-5849(02)01015-8.
10
Adhesion molecules and their role in vascular disease.
Am J Hypertens. 2001 Jun;14(6 Pt 2):44S-54S. doi: 10.1016/s0895-7061(01)02069-6.

引用本文的文献

1
Relations of Life's Essential 8 Score with Arterial and Microvascular Function: The Jackson Heart Study.
medRxiv. 2025 Aug 3:2025.08.01.25332660. doi: 10.1101/2025.08.01.25332660.
2
Sustained capillary enlargement induced by angiogenic gene therapy does not support post-ischemic muscle recovery of hyperlipidemic mice.
Front Bioeng Biotechnol. 2025 May 27;13:1512962. doi: 10.3389/fbioe.2025.1512962. eCollection 2025.
3
Association Between Patient Characteristics and the Depth of Microvascular Penetration Into the Adult Human Meniscus.
Am J Sports Med. 2025 Mar;53(3):658-665. doi: 10.1177/03635465241307216. Epub 2025 Jan 27.
4
Whole-Brain Vascular Architecture Mapping Identifies Region-Specific Microvascular Profiles In Vivo.
AJNR Am J Neuroradiol. 2024 Sep 9;45(9):1346-1354. doi: 10.3174/ajnr.A8344.
5
The Relation between Vascular Risk Factors and Flow in Cerebral Perforating Arteries: A 7 Tesla MRI Study.
Cerebrovasc Dis. 2025;54(1):121-128. doi: 10.1159/000537709. Epub 2024 Feb 9.
8
Liang-Ge-San: a classic traditional Chinese medicine formula, attenuates acute inflammation via targeting GSK3β.
Front Pharmacol. 2023 Jun 29;14:1181319. doi: 10.3389/fphar.2023.1181319. eCollection 2023.
10

本文引用的文献

1
Role of adipose tissue in haemostasis, coagulation and fibrinolysis.
Obes Rev. 2009 Sep;10(5):554-63. doi: 10.1111/j.1467-789X.2009.00593.x. Epub 2009 May 12.
2
Crosstalk between inflammation and thrombosis.
Maturitas. 2008 Sep-Oct;61(1-2):122-31. doi: 10.1016/j.maturitas.2008.11.008.
3
The impairment of preconditioning-mediated cardioprotection in pathological conditions.
Pharmacol Res. 2009 Jul;60(1):18-23. doi: 10.1016/j.phrs.2009.03.002. Epub 2009 Mar 13.
4
Oxidative stress and hypertension.
Med Clin North Am. 2009 May;93(3):621-35. doi: 10.1016/j.mcna.2009.02.015.
5
Platelet dysfunction in central obesity.
Nutr Metab Cardiovasc Dis. 2009 Jul;19(6):440-9. doi: 10.1016/j.numecd.2009.01.006. Epub 2009 Apr 5.
6
Adipose tissue: a motor for the inflammation associated with obesity.
IUBMB Life. 2009 Apr;61(4):424-30. doi: 10.1002/iub.169.
8
The role of renin-angiotensin system in prothrombotic state in essential hypertension.
Physiol Res. 2010;59(1):13-23. doi: 10.33549/physiolres.931525. Epub 2009 Feb 27.
9
Antioxidants attenuate hyperglycaemia-mediated brain endothelial cell dysfunction and blood-brain barrier hyperpermeability.
Diabetes Obes Metab. 2009 May;11(5):480-90. doi: 10.1111/j.1463-1326.2008.00987.x. Epub 2008 Feb 18.
10
Whole blood aggregation, coagulation, and markers of platelet activation in diet-induced diabetic C57BL/6J mice.
Diabetes Res Clin Pract. 2009 Apr;84(1):11-8. doi: 10.1016/j.diabres.2009.01.011. Epub 2009 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验