Suppr超能文献

消费者对牛背最长肌嫩度评价与图像色泽、大理石花纹和表面纹理特征的相关性。

Correlation of consumer assessment of longissimus dorsi beef palatability with image colour, marbling and surface texture features.

机构信息

FRCFT, University College Dublin, National University of Ireland, Agriculture and Food Science Centre, Belfield, Dublin 4, Ireland.

出版信息

Meat Sci. 2010 Mar;84(3):564-8. doi: 10.1016/j.meatsci.2009.10.013. Epub 2009 Oct 20.

Abstract

A new study was conducted to apply computer vision methods successfully developed using trained sensory panel palatability data to new samples with consumer panel palatability data. The computer vision methodology utilized the traditional approach of using beef muscle colour, marbling and surface texture as palatability indicators. These features were linked to corresponding consumer panel palatability data with the traditional approach of partial least squares regression (PLSR). Best subsets were selected by genetic algorithms. Results indicate that accurate modelling of likeability with regression models was possible (r(2)=0.86). Modelling of other important palatability attributes proved encouraging (tenderness r(2)=0.76, juiciness r(2)=0.69, flavour r(2)=0.78). Therefore, the current study provides a basis for further expanding computer vision methodology to correlate with consumer panel palatability data.

摘要

一项新的研究旨在成功应用计算机视觉方法,该方法使用经过训练的感官小组口感数据来分析新的样本和消费者小组口感数据。计算机视觉方法利用传统方法将牛肉肌肉颜色、大理石花纹和表面纹理作为口感指标。这些特征与传统的偏最小二乘回归(PLSR)方法相关联,与相应的消费者小组口感数据相联系。通过遗传算法选择最佳子集。结果表明,使用回归模型对喜好度进行准确建模是可行的(r(2)=0.86)。对其他重要口感属性的建模也很有希望(嫩度 r(2)=0.76,多汁性 r(2)=0.69,风味 r(2)=0.78)。因此,本研究为进一步扩展计算机视觉方法与消费者小组口感数据相关联提供了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验