Research Computing Center, University of North Carolina, Chapel Hill, North Carolina, 27599-3420, USA.
J Phys Chem A. 2010 May 13;114(18):5913-8. doi: 10.1021/jp101329f.
Biomolecular nucleophilic substitution reactions, S(N)2, are fundamental and commonplace in chemistry. It is the well-documented experimental finding in the literature that vicinal substitution with bulkier groups near the reaction center significantly slows the reaction due to steric hindrance, but theoretical understanding in the quantitative manner about factors dictating the S(N)2 reaction barrier height is still controversial. In this work, employing the new quantification approach that we recently proposed for the steric effect from the density functional theory framework, we investigate the relative contribution of three independent effects-steric, electrostatic, and quantum-to the S(N)2 barrier heights in gas phase for substituted methyl halide systems, R(1)R(2)R(3)CX, reacting with the fluorine anion, where R(1), R(2), and R(3) denote substituting groups and X = F or Cl. We found that in accordance with the experimental finding, for these systems, the steric effect dominates the transition state barrier, contributing positively to barrier heights, but this contribution is largely compensated by the negative, stabilizing contribution from the quantum effect due to the exchange-correlation interactions. Moreover, we find that it is the component from the electrostatic effect that is linearly correlated with the S(N)2 barrier height for the systems investigated in the present study. In addition, we compared our approach with the conventional method of energy decomposition in density functional theory as well as examined the steric effect from the wave function theory for these systems via natural bond orbital analysis.
生物分子亲核取代反应,S(N)2,在化学中是基础且常见的。文献中有大量的实验研究结果表明,由于空间位阻,靠近反应中心的较大取代基的邻位取代会显著减缓反应速率,但关于决定 S(N)2反应势垒高度的因素的理论理解在定量方面仍然存在争议。在这项工作中,我们采用了我们最近从密度泛函理论框架提出的用于研究空间位阻效应的新定量方法,研究了气相中取代甲基卤化物系统 R(1)R(2)R(3)CX(其中 R(1)、R(2)和 R(3)表示取代基,X = F 或 Cl)与氟阴离子反应的 S(N)2势垒高度的三个独立效应——空间位阻、静电和量子的相对贡献。我们发现,与实验结果一致,对于这些系统,空间位阻效应主导过渡态势垒,对势垒高度有正贡献,但由于交换相关相互作用引起的量子效应的负稳定贡献,这种贡献在很大程度上得到了补偿。此外,我们发现,对于本研究中所研究的系统,与 S(N)2势垒高度线性相关的是静电效应的组成部分。此外,我们还比较了我们的方法与密度泛函理论中的传统能量分解方法,并通过自然键轨道分析研究了这些系统的波函数理论中的空间位阻效应。