Saint Francis Hospital and Medical Center, Department of Surgery, 114 Woodland Street, Hartford, CT 06105, USA.
Crit Care Clin. 2010 Apr;26(2):409-21, table of contents. doi: 10.1016/j.ccc.2009.12.001.
Organ function is critically linked to the way tissues use available oxygen. In sepsis, tissue-related hypoxic injury is the result of hypoxemia and hypoperfusion and cytokine-mediated mitochondrial dysfunction termed cytopathic hypoxia. Organ dysfunction in sepsis is more likely related to derailment of the metabolic processes of cells to use available oxygen. Cellular dysoxia rather than hypoxia may be the most appropriate way of describing sepsis-related tissue injury. Lactate is a marker of aerobic mitochondrial dysfunction and anaerobic tissue metabolism and in some circumstances is considered the fuel of choice for certain tissues. The concept of cellular metabolic derangement or cytopathic hypoxia as a potential cause for multiorgan system dysfunction in sepsis may direct efforts to optimize outcome in septic patients from the classic targets of CO, tissue perfusion, DVo(2), and Vo(2) toward moderating sepsis-related early cytokine response, maximizing mitochondrial function, and using biomarkers to monitor treatment response.
器官功能与组织利用可用氧气的方式密切相关。在脓毒症中,与组织相关的缺氧性损伤是由低氧血症和低灌注以及细胞因子介导的线粒体功能障碍引起的,称为细胞毒性缺氧。脓毒症中的器官功能障碍更可能与细胞利用可用氧气的代谢过程脱轨有关。细胞缺氧而不是缺氧可能是描述与脓毒症相关的组织损伤的最合适方式。乳酸是有氧线粒体功能障碍和无氧组织代谢的标志物,在某些情况下被认为是某些组织的首选燃料。细胞代谢紊乱或细胞毒性缺氧作为脓毒症多器官系统功能障碍的潜在原因的概念可能会促使人们从经典的 CO、组织灌注、DVo(2)和 Vo(2)目标转向调节脓毒症相关的早期细胞因子反应、最大限度地提高线粒体功能以及使用生物标志物来监测治疗反应,从而优化脓毒症患者的预后。