Institute for Optoelectronics and Microsystems and ETSII, Universidad Politecnica de Madrid, José Gutiérrez Abascal 2, Madrid, Spain.
Ultrasonics. 2010 Aug;50(8):758-76. doi: 10.1016/j.ultras.2010.03.002. Epub 2010 Mar 15.
We study non-linear bubble oscillations driven by an acoustic pressure with the bubble being immersed in a viscoelastic, Phan-Thien-Tanner liquid. Solution is provided numerically through a method which is based on a finite element discretization of the Navier-Stokes flow equations. The proposed computational approach does not rely on the solution of the simplified Rayleigh-Plesset equation, is not limited in studying only spherically symmetric bubbles and provides coupled solutions for the velocity, stress fields and bubble interface. We present solutions for non-spherical bubbles, with asphericity being addressed by means of Legendre polynomials or associated Legendre functions. A parametric investigation of the bubble dynamical oscillatory response as a function of the fluid rheological properties shows that the amplitude of bubble oscillations drastically increases as liquid elasticity (quantified by the Deborah number) increases or as liquid viscosity decreases (quantified by the Reynolds number). Extensive numerical calculations demonstrate that increasing elasticity and/or viscosity of the surrounding liquid tend to stabilize the shape anisotropy of an initially non-spherical bubble. Results are shown for pressure amplitudes 0.2-2MPa and Deborah, Reynolds numbers in the intervals of 1-8 and 0.094-1.256, respectively.
我们研究了在粘性 Phan-Thien-Tanner 液体中浸没的气泡受到声压驱动的非线性气泡振动。通过一种基于纳维-斯托克斯流动方程的有限元离散化方法,数值上提供了该问题的解。所提出的计算方法不依赖于简化的瑞利-普莱塞特方程的解,不仅限于研究球形对称气泡,而且为速度、应力场和气泡界面提供了耦合解。我们给出了非球形气泡的解,通过勒让德多项式或关联勒让德函数来解决非球度问题。作为对流体流变性质的函数,对气泡动力振荡响应的参数研究表明,随着液体弹性(用德博拉数来量化)的增加或液体粘度的降低(用雷诺数来量化),气泡的振荡幅度会急剧增加。大量的数值计算表明,增加周围液体的弹性和/或粘性会使初始非球形气泡的形状各向异性趋于稳定。结果显示了压力幅度为 0.2-2MPa 和德博拉、雷诺数分别在 1-8 和 0.094-1.256 范围内的情况。