Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7999-8004. doi: 10.1073/pnas.1003655107. Epub 2010 Apr 12.
Therapeutic strategies that augment insulin release from pancreatic beta-cells are considered beneficial in the treatment of type 2 diabetes. We previously demonstrated that activation of beta-cell M(3) muscarinic receptors (M3Rs) greatly promotes glucose-stimulated insulin secretion (GSIS), suggesting that strategies aimed at enhancing signaling through beta-cell M3Rs may become therapeutically useful. M3R activation leads to the stimulation of G proteins of the G(q) family, which are under the inhibitory control of proteins known as regulators of G protein signaling (RGS proteins). At present, it remains unknown whether RGS proteins play a role in regulating insulin release. To address this issue, we initially demonstrated that MIN6 insulinoma cells express functional M3Rs and that RGS4 was by far the most abundant RGS protein expressed by these cells. Strikingly, siRNA-mediated knockdown of RGS4 expression in MIN6 cells greatly enhanced M3R-mediated augmentation of GSIS and calcium release. We obtained similar findings using pancreatic islets prepared from RGS4-deficient mice. Interestingly, RGS4 deficiency had little effect on insulin release caused by activation of other beta-cell GPCRs. Finally, treatment of mutant mice selectively lacking RGS4 in pancreatic beta-cells with a muscarinic agonist (bethanechol) led to significantly increased plasma insulin and reduced blood glucose levels, as compared to control littermates. Studies with beta-cell-specific M3R knockout mice showed that these responses were mediated by beta-cell M3Rs. These findings indicate that RGS4 is a potent negative regulator of M3R function in pancreatic beta-cells, suggesting that RGS4 may represent a potential target to promote insulin release for therapeutic purposes.
从胰腺β细胞中增加胰岛素释放的治疗策略被认为对 2 型糖尿病的治疗有益。我们之前的研究表明,β细胞 M3 毒蕈碱受体 (M3R) 的激活极大地促进了葡萄糖刺激的胰岛素分泌 (GSIS),这表明旨在增强β细胞 M3R 信号的策略可能具有治疗用途。M3R 激活导致 G 蛋白家族的 G(q) 的刺激,该 G 蛋白受到被称为 G 蛋白信号调节蛋白 (RGS 蛋白) 的蛋白的抑制控制。目前,尚不清楚 RGS 蛋白是否在调节胰岛素释放中发挥作用。为了解决这个问题,我们最初证明 MIN6 胰岛细胞瘤表达功能性 M3R,并且 RGS4 是迄今为止这些细胞表达的最丰富的 RGS 蛋白。引人注目的是,MIN6 细胞中 RGS4 表达的 siRNA 介导的敲低大大增强了 M3R 介导的 GSIS 和钙释放的增强。我们使用来自 RGS4 缺陷型小鼠的胰岛获得了类似的发现。有趣的是,RGS4 缺陷对由其他β细胞 GPCR 激活引起的胰岛素释放几乎没有影响。最后,用毒蕈碱激动剂 (氨甲酰胆碱) 处理选择性缺乏胰腺β细胞中 RGS4 的突变型小鼠,与对照同窝仔相比,导致血浆胰岛素水平显著增加和血糖水平降低。用β细胞特异性 M3R 敲除小鼠进行的研究表明,这些反应是由β细胞 M3R 介导的。这些发现表明 RGS4 是胰腺β细胞中 M3R 功能的有效负调节剂,表明 RGS4 可能代表促进胰岛素释放的潜在治疗靶标。