Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway.
Biostatistics. 2010 Jul;11(3):453-72. doi: 10.1093/biostatistics/kxq014. Epub 2010 Apr 13.
Missing observations are commonplace in longitudinal data. We discuss how to model and analyze such data in a dynamic framework, that is, taking into consideration the time structure of the process and the influence of the past on the present and future responses. An autoregressive model is used as a special case of the linear increments model defined by Farewell (2006. Linear models for censored data, [PhD Thesis]. Lancaster University) and Diggle and others (2007. Analysis of longitudinal data with drop-out: objectives, assumptions and a proposal. Journal of the Royal Statistical Society, Series C (Applied Statistics, 56, 499-550). We wish to reconstruct responses for missing data and discuss the required assumptions needed for both monotone and nonmonotone missingness. The computational procedures suggested are very simple and easily applicable. They can also be used to estimate causal effects in the presence of time-dependent confounding. There are also connections to methods from survival analysis: The Aalen-Johansen estimator for the transition matrix of a Markov chain turns out to be a special case. Analysis of quality of life data from a cancer clinical trial is analyzed and presented. Some simulations are given in the supplementary material available at Biostatistics online.
在纵向数据中,缺失观测值很常见。我们讨论如何在动态框架中对这类数据进行建模和分析,也就是说,要考虑到过程的时间结构以及过去对现在和未来响应的影响。自回归模型是 Farewell(2006. 有删失数据的线性模型,[博士论文]。兰卡斯特大学)和 Diggle 等人(2007. 带有缺失数据的纵向数据分析:目标、假设和建议。皇家统计学会会刊,C 辑(应用统计学),56,499-550)所定义的线性增量模型的一个特例。我们希望对缺失数据进行响应重构,并讨论单调和非单调缺失所需的假设。所提出的计算程序非常简单,易于应用。它们也可用于在存在时依混杂的情况下估计因果效应。与生存分析方法也存在联系:马尔可夫链转移矩阵的 Aalen-Johansen 估计量就是一个特例。对癌症临床试验中生命质量数据的分析和介绍,请参见补充材料中的在线生物统计学。