Suppr超能文献

使用线性增量模型对缺失纵向数据进行重建的动态方法。

A dynamic approach for reconstructing missing longitudinal data using the linear increments model.

机构信息

Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway.

出版信息

Biostatistics. 2010 Jul;11(3):453-72. doi: 10.1093/biostatistics/kxq014. Epub 2010 Apr 13.

Abstract

Missing observations are commonplace in longitudinal data. We discuss how to model and analyze such data in a dynamic framework, that is, taking into consideration the time structure of the process and the influence of the past on the present and future responses. An autoregressive model is used as a special case of the linear increments model defined by Farewell (2006. Linear models for censored data, [PhD Thesis]. Lancaster University) and Diggle and others (2007. Analysis of longitudinal data with drop-out: objectives, assumptions and a proposal. Journal of the Royal Statistical Society, Series C (Applied Statistics, 56, 499-550). We wish to reconstruct responses for missing data and discuss the required assumptions needed for both monotone and nonmonotone missingness. The computational procedures suggested are very simple and easily applicable. They can also be used to estimate causal effects in the presence of time-dependent confounding. There are also connections to methods from survival analysis: The Aalen-Johansen estimator for the transition matrix of a Markov chain turns out to be a special case. Analysis of quality of life data from a cancer clinical trial is analyzed and presented. Some simulations are given in the supplementary material available at Biostatistics online.

摘要

在纵向数据中,缺失观测值很常见。我们讨论如何在动态框架中对这类数据进行建模和分析,也就是说,要考虑到过程的时间结构以及过去对现在和未来响应的影响。自回归模型是 Farewell(2006. 有删失数据的线性模型,[博士论文]。兰卡斯特大学)和 Diggle 等人(2007. 带有缺失数据的纵向数据分析:目标、假设和建议。皇家统计学会会刊,C 辑(应用统计学),56,499-550)所定义的线性增量模型的一个特例。我们希望对缺失数据进行响应重构,并讨论单调和非单调缺失所需的假设。所提出的计算程序非常简单,易于应用。它们也可用于在存在时依混杂的情况下估计因果效应。与生存分析方法也存在联系:马尔可夫链转移矩阵的 Aalen-Johansen 估计量就是一个特例。对癌症临床试验中生命质量数据的分析和介绍,请参见补充材料中的在线生物统计学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7032/3293429/a51ff7f9db44/biostskxq014f01_lw.jpg

相似文献

1
A dynamic approach for reconstructing missing longitudinal data using the linear increments model.
Biostatistics. 2010 Jul;11(3):453-72. doi: 10.1093/biostatistics/kxq014. Epub 2010 Apr 13.
2
Assessing quality of life in a randomized clinical trial: correcting for missing data.
BMC Med Res Methodol. 2009 Apr 30;9:28. doi: 10.1186/1471-2288-9-28.
3
Analysis of censored discrete longitudinal data: estimation of mean response.
Stat Med. 2009 Feb 15;28(4):605-24. doi: 10.1002/sim.3492.
4
Finite Mixtures of Hidden Markov Models for Longitudinal Responses Subject to Drop out.
Multivariate Behav Res. 2020 Sep-Oct;55(5):647-663. doi: 10.1080/00273171.2019.1660606. Epub 2019 Sep 27.
5
Estimation and comparison of rates of change in longitudinal studies with informative drop-outs.
Stat Med. 1999 May 30;18(10):1215-33. doi: 10.1002/(sici)1097-0258(19990530)18:10<1215::aid-sim118>3.0.co;2-6.
6
A hybrid landmark Aalen-Johansen estimator for transition probabilities in partially non-Markov multi-state models.
Lifetime Data Anal. 2021 Oct;27(4):737-760. doi: 10.1007/s10985-021-09534-4. Epub 2021 Sep 30.
7
Statistical analysis of longitudinal quality of life data with missing measurements.
Qual Life Res. 1992 Jun;1(3):219-24. doi: 10.1007/BF00635621.
8
Joint modeling of event time and nonignorable missing longitudinal data.
Lifetime Data Anal. 2002 Jun;8(2):99-115. doi: 10.1023/a:1014871806118.
9
Non-parametric estimation of transition probabilities in non-Markov multi-state models: The landmark Aalen-Johansen estimator.
Stat Methods Med Res. 2018 Jul;27(7):2081-2092. doi: 10.1177/0962280216674497. Epub 2016 Oct 20.
10
Longitudinal data analysis with non-ignorable missing data.
Stat Methods Med Res. 2016 Feb;25(1):205-20. doi: 10.1177/0962280212448721. Epub 2012 May 24.

引用本文的文献

1
Methods for handling longitudinal outcome processes truncated by dropout and death.
Biostatistics. 2018 Oct 1;19(4):407-425. doi: 10.1093/biostatistics/kxx045.
2
Linear Increments with Non-monotone Missing Data and Measurement Error.
Scand Stat Theory Appl. 2016 Dec;43(4):996-1018. doi: 10.1111/sjos.12225. Epub 2016 Apr 6.
3
Multiple Imputation of Missing Composite Outcomes in Longitudinal Data.
Stat Biosci. 2016;8(2):310-332. doi: 10.1007/s12561-016-9146-z. Epub 2016 Apr 5.
4
Can we believe the DAGs? A comment on the relationship between causal DAGs and mechanisms.
Stat Methods Med Res. 2016 Oct;25(5):2294-2314. doi: 10.1177/0962280213520436. Epub 2014 Jan 23.
5
Causality, mediation and time: a dynamic viewpoint.
J R Stat Soc Ser A Stat Soc. 2012 Oct;175(4):831-861. doi: 10.1111/j.1467-985X.2011.01030.x.

本文引用的文献

1
Clinimetrics: The European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30 questionnaire.
J Physiother. 2022 Apr;68(2):146. doi: 10.1016/j.jphys.2021.07.001. Epub 2021 Dec 3.
3
A martingale residual diagnostic for longitudinal and recurrent event data.
Lifetime Data Anal. 2010 Jan;16(1):118-35. doi: 10.1007/s10985-009-9129-1. Epub 2009 Aug 23.
4
Assessing quality of life in a randomized clinical trial: correcting for missing data.
BMC Med Res Methodol. 2009 Apr 30;9:28. doi: 10.1186/1471-2288-9-28.
5
Analysis of censored discrete longitudinal data: estimation of mean response.
Stat Med. 2009 Feb 15;28(4):605-24. doi: 10.1002/sim.3492.
6
Fixed effects, random effects and GEE: what are the differences?
Stat Med. 2009 Jan 30;28(2):221-39. doi: 10.1002/sim.3478.
7
Dynamic path analysis-a new approach to analyzing time-dependent covariates.
Lifetime Data Anal. 2006 Jun;12(2):143-67. doi: 10.1007/s10985-006-9004-2. Epub 2006 Jul 1.
8
Comparison of dynamic treatment regimes via inverse probability weighting.
Basic Clin Pharmacol Toxicol. 2006 Mar;98(3):237-42. doi: 10.1111/j.1742-7843.2006.pto_329.x.
9
Analysis of longitudinal studies with death and drop-out: a case study.
Stat Med. 2004 Jul 30;23(14):2215-26. doi: 10.1002/sim.1821.
10
Handling drop-out in longitudinal studies.
Stat Med. 2004 May 15;23(9):1455-97. doi: 10.1002/sim.1728.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验