Suppr超能文献

Laser smoothing of binary gratings and multilevel etched structures in fused silica.

作者信息

Wlodarczyk Krystian L, Mendez Enrique, Baker Howard J, McBride Roy, Hall Denis R

机构信息

School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom.

出版信息

Appl Opt. 2010 Apr 10;49(11):1997-2005. doi: 10.1364/AO.49.001997.

Abstract

We describe a promising approach to the processing of micro-optical components, where CO(2) laser irradiation in raster scan is used to generate localized surface melting of binary or multilevel structures on silica, fabricated by conventional reactive-ion etching. The technique is shown to provide well-controlled local smoothing of step features by viscous flow under surface tension forces, relaxing the scale length of etch steps controllably between 1 and 30 microm. Uniform treatment of extended areas is obtained by raster scanning with a power stabilized, Gaussian beam profile in the 0.5 to 1 mm diameter range. For step heights of 1 microm or less, the laser-induced relaxation is symmetric, giving softening of just the upper and lower corners at a threshold power of 4.7 W, extending to symmetric long scale relaxation at 7.9 W, with the upper limit set by the onset of significant vaporization. Some asymmetry of the relaxation is observed for 3 microm high steps. Also, undercut steps or troughs produced by photolithography and etching of a deep 64 level multistep surface are found to have a polarization-dependent distortion after laser smoothing. The laser reflow process may be useful for improving the diffraction efficiency by suppressing high orders in binary diffractive optical elements, or for converting multilevel etched structures in fused silica into smoothed refractive surfaces in, for example, custom microlens arrays.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验