Suppr超能文献

一种用于大规模多重假设检验的稳健方法。

A robust method for large-scale multiple hypotheses testing.

作者信息

Han Seungbong, Andrei Adin-Cristian, Tsui Kam-Wah

机构信息

Department of Statistics, University of Wisconsin-Madison, Medical Science Center 1300 University Avenue, Madison, WI 53706, USA.

出版信息

Biom J. 2010 Apr;52(2):222-32. doi: 10.1002/bimj.200900177.

Abstract

When drawing large-scale simultaneous inference, such as in genomics and imaging problems, multiplicity adjustments should be made, since, otherwise, one would be faced with an inflated type I error. Numerous methods are available to estimate the proportion of true null hypotheses pi(0), among a large number of hypotheses tested. Many methods implicitly assume that the pi(0) is large, that is, close to 1. However, in practice, mid-range pi(0) values are frequently encountered and many of the widely used methods tend to produce highly variable or biased estimates of pi(0). As a remedy in such situations, we propose a hierarchical Bayesian model that produces an estimator of pi(0) that exhibits considerably less bias and is more stable. Simulation studies seem indicative of good method performance even when low-to-moderate correlation exists among test statistics. Method performance is assessed in simulated settings and its practical usefulness is illustrated in an application to a type II diabetes study.

摘要

在进行大规模同时推断时,例如在基因组学和成像问题中,应该进行多重性调整,因为否则会面临第一类错误膨胀的问题。有许多方法可用于估计在大量检验的假设中真零假设(\pi(0))的比例。许多方法隐含地假设(\pi(0))很大,即接近1。然而,在实际中,经常会遇到中等范围的(\pi(0))值,并且许多广泛使用的方法往往会产生高度可变或有偏差的(\pi(0))估计值。作为这种情况的补救措施,我们提出了一种分层贝叶斯模型,该模型产生的(\pi(0))估计量偏差明显较小且更稳定。模拟研究表明,即使检验统计量之间存在低到中等程度的相关性,该方法也具有良好的性能。在模拟环境中评估了方法性能,并在一项II型糖尿病研究的应用中说明了其实用性。

相似文献

1
A robust method for large-scale multiple hypotheses testing.
Biom J. 2010 Apr;52(2):222-32. doi: 10.1002/bimj.200900177.
2
Bias and variance reduction in estimating the proportion of true-null hypotheses.
Biostatistics. 2015 Jan;16(1):189-204. doi: 10.1093/biostatistics/kxu029. Epub 2014 Jun 23.
3
A simple imputation method for longitudinal studies with non-ignorable non-responses.
Biom J. 2006 Apr;48(2):302-18. doi: 10.1002/bimj.200510188.
4
False discovery rate estimation for large-scale homogeneous discrete p-values.
Biometrics. 2016 Jun;72(2):639-48. doi: 10.1111/biom.12429. Epub 2015 Oct 22.
6
Stepwise gatekeeping procedures in clinical trial applications.
Biom J. 2006 Dec;48(6):984-91. doi: 10.1002/bimj.200610274.
7
Robust alternatives to the F-Test in mixed linear models based on MM-estimates.
Biometrics. 2007 Dec;63(4):1045-52. doi: 10.1111/j.1541-0420.2007.00804.x. Epub 2007 May 2.
8
Proportional hazards regression for cancer studies.
Biometrics. 2008 Mar;64(1):141-8. doi: 10.1111/j.1541-0420.2007.00830.x. Epub 2007 Jun 15.
9
Randomized -values for multiple testing and their application in replicability analysis.
Biom J. 2022 Feb;64(2):384-409. doi: 10.1002/bimj.202000155. Epub 2021 Jan 19.
10
Bayesian models based on test statistics for multiple hypothesis testing problems.
Bioinformatics. 2008 Apr 1;24(7):943-9. doi: 10.1093/bioinformatics/btn049. Epub 2008 Feb 1.

本文引用的文献

1
A genome-wide gene expression signature of environmental geography in leukocytes of Moroccan Amazighs.
PLoS Genet. 2008 Apr 11;4(4):e1000052. doi: 10.1371/journal.pgen.1000052.
2
A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility.
Genome Res. 2008 May;18(5):706-16. doi: 10.1101/gr.074914.107. Epub 2008 Mar 17.
3
Bayesian models based on test statistics for multiple hypothesis testing problems.
Bioinformatics. 2008 Apr 1;24(7):943-9. doi: 10.1093/bioinformatics/btn049. Epub 2008 Feb 1.
4
Robust estimation of the false discovery rate.
Bioinformatics. 2006 Aug 15;22(16):1979-87. doi: 10.1093/bioinformatics/btl328. Epub 2006 Jun 15.
5
Assessing stability of gene selection in microarray data analysis.
BMC Bioinformatics. 2006 Feb 1;7:50. doi: 10.1186/1471-2105-7-50.
6
A mixture model for estimating the local false discovery rate in DNA microarray analysis.
Bioinformatics. 2004 Nov 1;20(16):2694-701. doi: 10.1093/bioinformatics/bth310. Epub 2004 May 14.
7
Detecting differential gene expression with a semiparametric hierarchical mixture method.
Biostatistics. 2004 Apr;5(2):155-76. doi: 10.1093/biostatistics/5.2.155.
8
Improving false discovery rate estimation.
Bioinformatics. 2004 Jul 22;20(11):1737-45. doi: 10.1093/bioinformatics/bth160. Epub 2004 Feb 26.
9
Statistical significance for genomewide studies.
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5. doi: 10.1073/pnas.1530509100. Epub 2003 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验