Discovery DMPK, AstraZeneca R&D Mölndal, Sweden.
Rapid Commun Mass Spectrom. 2010 May 15;24(9):1231-40. doi: 10.1002/rcm.4505.
The metabolites formed via the major metabolic pathways of haloperidol in liver microsomes, N-dealkylation and ring oxidation to the pyridinium species, were produced by electrochemical oxidation and characterized by ultra-performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI-MS). Liver microsomal incubations and electrochemical oxidation in the presence of potassium cyanide (KCN) resulted in two diastereomeric cyano adducts, proposed to be generated from trapping of the endocyclic iminium species of haloperidol. Electrochemical oxidation of haloperidol in the presence of KCN gave a third isomeric cyano adduct, resulting from trapping of the exocyclic iminium species of haloperidol. In the electrochemical experiments, addition of KCN almost completely blocked the formation of the major oxidation products, namely the N-dealkylated products, the pyridinium species and a putative lactam. This major shift in product formation by electrochemical oxidation was not observed for the liver microsomal incubations where the N-dealkylation and the pyridinium species were the major metabolites also in the presence of KCN. The previously not observed dihydropyridinium species of haloperidol was detected in the samples, both from electrochemical oxidation and the liver microsomal incubations, in the presence of KCN. The presence of the dihydropyridinium species and the absence of the corresponding cyano adduct lead to the speculation that an unstable cyano adduct was formed, but that cyanide was eliminated to regenerate the stable conjugated system. The formation of the exocyclic cyano adduct in the electrochemical experiments but not in the liver microsomal incubations suggests that the exocyclic iminium intermediate, obligatory in the electrochemically mediated N-dealkylation, may not be formed in the P450-catalyzed reaction.
在肝微粒体中,经主要代谢途径形成的氟哌啶醇代谢物,包括 N-脱烷基化和环氧化生成吡啶𬭩物种,是通过电化学氧化和超高效液相色谱/电喷雾电离质谱(UPLC/ESI-MS)来鉴定和表征的。肝微粒体孵育和存在氰化钾(KCN)的电化学氧化导致两种非对映氰加合物的形成,据推测这些加合物是通过捕获氟哌啶醇的内环亚铵物种生成的。在存在 KCN 的情况下,氟哌啶醇的电化学氧化产生了第三种异构氰加合物,这是通过捕获氟哌啶醇的外环亚铵物种生成的。在电化学实验中,添加 KCN 几乎完全阻止了主要氧化产物的形成,即 N-脱烷基化产物、吡啶𬭩物种和一个假定的内酰胺。这种由电化学氧化引起的产物形成的主要转变在肝微粒体孵育中没有观察到,在存在 KCN 的情况下,N-脱烷基化和吡啶𬭩物种也是主要代谢物。在存在 KCN 的情况下,在电化学氧化和肝微粒体孵育的样品中均检测到了先前未观察到的氟哌啶醇二氢吡啶𬭩物种。二氢吡啶𬭩物种的存在和相应氰加合物的缺失导致推测形成了不稳定的氰加合物,但氰化物被消除以再生稳定的共轭体系。在外电场介导的 N-脱烷基化中必需的外环亚铵中间体可能不会在 P450 催化反应中形成,这表明在外电场实验中形成了外环氰加合物,但在肝微粒体孵育中未形成。