Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.
Nature. 2010 Apr 15;464(7291):1052-7. doi: 10.1038/nature08878.
The four receptors of the Notch family are widely expressed transmembrane proteins that function as key conduits through which mammalian cells communicate to regulate cell fate and growth. Ligand binding triggers a conformational change in the receptor negative regulatory region (NRR) that enables ADAM protease cleavage at a juxtamembrane site that otherwise lies buried within the quiescent NRR. Subsequent intramembrane proteolysis catalysed by the gamma-secretase complex liberates the intracellular domain (ICD) to initiate the downstream Notch transcriptional program. Aberrant signalling through each receptor has been linked to numerous diseases, particularly cancer, making the Notch pathway a compelling target for new drugs. Although gamma-secretase inhibitors (GSIs) have progressed into the clinic, GSIs fail to distinguish individual Notch receptors, inhibit other signalling pathways and cause intestinal toxicity, attributed to dual inhibition of Notch1 and 2 (ref. 11). To elucidate the discrete functions of Notch1 and Notch2 and develop clinically relevant inhibitors that reduce intestinal toxicity, we used phage display technology to generate highly specialized antibodies that specifically antagonize each receptor paralogue and yet cross-react with the human and mouse sequences, enabling the discrimination of Notch1 versus Notch2 function in human patients and rodent models. Our co-crystal structure shows that the inhibitory mechanism relies on stabilizing NRR quiescence. Selective blocking of Notch1 inhibits tumour growth in pre-clinical models through two mechanisms: inhibition of cancer cell growth and deregulation of angiogenesis. Whereas inhibition of Notch1 plus Notch2 causes severe intestinal toxicity, inhibition of either receptor alone reduces or avoids this effect, demonstrating a clear advantage over pan-Notch inhibitors. Our studies emphasize the value of paralogue-specific antagonists in dissecting the contributions of distinct Notch receptors to differentiation and disease and reveal the therapeutic promise in targeting Notch1 and Notch2 independently.
Notch 家族的四个受体是广泛表达的跨膜蛋白,作为哺乳动物细胞通讯的关键途径,调节细胞命运和生长。配体结合触发受体负调控区(NRR)的构象变化,使 ADAM 蛋白酶在靠近质膜的位点切割,否则该位点被埋藏在静止的 NRR 中。随后,由 γ-分泌酶复合物催化的跨膜蛋白酶解释放细胞内结构域(ICD),启动下游 Notch 转录程序。每个受体的异常信号与许多疾病有关,特别是癌症,这使得 Notch 途径成为新药的一个有吸引力的靶点。尽管 γ-分泌酶抑制剂(GSIs)已经进入临床应用,但 GSIs 不能区分个体 Notch 受体,抑制其他信号通路,并导致肠道毒性,这归因于 Notch1 和 Notch2 的双重抑制(参考文献 11)。为了阐明 Notch1 和 Notch2 的独特功能,并开发降低肠道毒性的临床相关抑制剂,我们使用噬菌体展示技术产生了高度特异性的抗体,这些抗体专门拮抗每个受体同源物,但与人和鼠序列交叉反应,从而能够在人类患者和啮齿动物模型中区分 Notch1 与 Notch2 的功能。我们的共晶结构表明,抑制机制依赖于 NRR 的静止稳定。在临床前模型中,选择性阻断 Notch1 通过两种机制抑制肿瘤生长:抑制癌细胞生长和血管生成失调。而 Notch1 加 Notch2 的抑制会导致严重的肠道毒性,而单独抑制任一受体则会减少或避免这种效应,这表明与 pan-Notch 抑制剂相比具有明显优势。我们的研究强调了同工型特异性拮抗剂在剖析不同 Notch 受体对分化和疾病的贡献方面的价值,并揭示了独立靶向 Notch1 和 Notch2 的治疗潜力。