Suppr超能文献

研制压缩控制式低强度激光探头系统:迈向临床应用。

Development of compression-controlled low-level laser probe system: towards clinical application.

机构信息

Department of Biomedical Engineering, Yonsei University, 234 Maeji-Ri, Heungup-Myeon, Wonju-Si, Gangwon-Do, 220-710, Korea.

出版信息

Lasers Med Sci. 2010 Sep;25(5):699-704. doi: 10.1007/s10103-010-0779-8.

Abstract

Various physico-chemical tissue optical clearing (TOC) methods have been suggested to maximize photon density in tissue. In order to enhance photon density, a compression-controlled low-level laser probe (CCLLP) system was developed by utilizing the principle of mechanical tissue compression. Negative compression (NC) was applied to the laser probes built in various diameters and simultaneously the laser was irradiated into ex-vivo porcine skin samples. Laser photon density (LPD) was evaluated as a function of NC and probe diameter by analyzing 2D diffusion images of the laser exposures. The CCLLP system resulted in a concentrated laser beam profile, which means enhancement of the LPD. As indicators of LPD, the laser peak intensity increased and the full width at half maximum (FWHM) decreased as a function of NC. The peak intensity at –30 kPa increased 2.74, 3.22, and 3.64 fold at laser probe diameters of 20, 30, and 40 mm, respectively. In addition, sample temperature was measured with a thermal camera and increased 0.4 K at –30 kPa after 60 s of laser irradiation as a result of enhanced LPD. The CCLLP system effectively demonstrated enhancement of the LPD in tissue and potentially its clinical feasibility.

摘要

各种物理化学组织光学透明化(TOC)方法已被提出,以最大限度地提高组织中的光子密度。为了提高光子密度,利用机械组织压缩原理开发了一种压缩控制低水平激光探头(CCLLP)系统。对内置不同直径的激光探头施加负压缩(NC),同时将激光照射到离体猪皮样本上。通过分析激光照射的 2D 扩散图像,评估激光光子密度(LPD)作为 NC 和探头直径的函数。CCLLP 系统产生了集中的激光束轮廓,这意味着 LPD 的增强。作为 LPD 的指标,激光峰值强度随着 NC 的增加而增加,半峰全宽(FWHM)随着 NC 的增加而减小。在激光探头直径为 20、30 和 40 毫米时,-30 kPa 处的峰值强度分别增加了 2.74、3.22 和 3.64 倍。此外,用热像仪测量样品温度,由于 LPD 的增强,激光照射 60 秒后样品温度升高 0.4 K。CCLLP 系统有效地证明了组织中 LPD 的增强,并且可能具有临床可行性。

相似文献

1
Development of compression-controlled low-level laser probe system: towards clinical application.
Lasers Med Sci. 2010 Sep;25(5):699-704. doi: 10.1007/s10103-010-0779-8.
4
Optical clearing of skin using flash lamp-induced enhancement of epidermal permeability.
Lasers Surg Med. 2006 Oct;38(9):824-36. doi: 10.1002/lsm.20392.
8
Effects of tissue water content on the propagation of laser light during low-level laser therapy.
J Biomed Opt. 2015 May;20(5):051027. doi: 10.1117/1.JBO.20.5.051027.
9
Enhancement of light propagation depth in skin: cross-validation of mathematical modeling methods.
Lasers Med Sci. 2009 Jul;24(4):605-15. doi: 10.1007/s10103-008-0625-4. Epub 2008 Nov 22.
10
Depth of penetration of an 850nm wavelength low level laser in human skin.
Acupunct Electrother Res. 2007;32(1-2):81-6. doi: 10.3727/036012907815844165.

引用本文的文献

1
A Light Illumination Enhancement Device for Photoacoustic Imaging: In Vivo Animal Study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Aug;64(8):1205-1211. doi: 10.1109/TUFFC.2017.2713599. Epub 2017 Jun 8.

本文引用的文献

4
Dehydration mechanism of optical clearing in tissue.
J Biomed Opt. 2006 Jul-Aug;11(4):041117. doi: 10.1117/1.2343208.
6
LASER-tissue interactions.
Clin Dermatol. 2006 Jan-Feb;24(1):2-7. doi: 10.1016/j.clindermatol.2005.10.019.
7
Measurement of the mechanical properties of the skin using the suction test.
Skin Res Technol. 2006 Feb;12(1):24-31. doi: 10.1111/j.0909-725X.2006.00126.x.
8
Reversible dissociation of collagen in tissues.
J Invest Dermatol. 2003 Dec;121(6):1332-5. doi: 10.1046/j.1523-1747.2003.12634.x.
9
A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin.
Skin Res Technol. 2003 Aug;9(3):274-83. doi: 10.1034/j.1600-0846.2003.00019.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验