University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, Pennsylvania 15213, USA.
J Biomech. 2010 Jun 18;43(9):1653-9. doi: 10.1016/j.jbiomech.2010.03.004. Epub 2010 Apr 14.
Glenoid prosthesis loosening is the most common cause for revision total shoulder arthroplasty. Improved glenoid prosthesis design requires looking beyond initial post-implantation static stress analyses. Adaptive bone remodeling simulations based on Wolff's law are needed for predicting long-term glenoid prosthesis results. This study demonstrates the capability of predicting glenoid bone remodeling produced by changing prosthesis design features. Twelve glenoid prostheses were designed to fit each of six donor human glenoids, using combinations of three peg types and four backing-peg material combinations (polyethylene and or metal). The twelve FE prosthesis models were individually combined, simulating surgical implantation, with the glenoid models. Remodeling simulations, using a validated adaptive bone remodeling simulation, commenced with homogeneous glenoid bone density. To produce bone remodeling, center, posterior-offset, and anterior-offset physiologic loads were consecutively applied to the bone-prosthesis FE models for 300 iterations. Upon completion, region-specific mean predicted bone apparent densities were compared between bone-prosthesis and intact glenoid FE models. Metal fixations significantly increased proximal-center bone density. Polyethylene fixations resulted in bone density approximately equal to intact. Two angled polyethylene peg designs with longer-anterior and shorter-posterior pegs, reflecting natural glenoid shape, best maintained mid and distal glenoid bone density. While these initial results were not validated, they demonstrate the capability and potential of adaptive glenoid bone remodeling simulation. We expect FE glenoid bone remodeling simulations to become powerful and robust tools in the design and evaluation of glenoid prostheses.
肩盂假体松动是翻修全肩关节置换术最常见的原因。改进的肩盂假体设计需要超越初始植入后的静态应力分析。基于沃尔夫定律的适应性骨重塑模拟对于预测长期肩盂假体结果是必要的。本研究展示了预测改变假体设计特征产生的肩盂骨重塑的能力。使用三种钉类型和四种背钉材料组合(聚乙烯和/或金属)中的每一种组合,设计了 12 个适合 6 个供体人类肩盂的肩盂假体。将这 12 个有限元假体模型分别与肩盂模型组合,模拟手术植入。使用经过验证的适应性骨重塑模拟,从均匀的肩盂骨密度开始进行重塑模拟。为了产生骨重塑,对骨-假体有限元模型连续施加中心、后偏移和前偏移生理负荷 300 次迭代。完成后,比较骨-假体和完整肩盂有限元模型之间特定区域的平均预测骨表观密度。金属固定物显著增加了近中心骨密度。聚乙烯固定物导致的骨密度与完整的骨密度大致相等。两种带角度的聚乙烯钉设计,具有较长的前钉和较短的后钉,反映了自然的肩盂形状,能够最好地维持中侧和远侧肩盂的骨密度。虽然这些初步结果尚未得到验证,但它们展示了适应性肩盂骨重塑模拟的能力和潜力。我们预计有限元肩盂骨重塑模拟将成为设计和评估肩盂假体的强大而稳健的工具。