Suppr超能文献

用于基于细胞的高通量筛选的小型化微流控形式

Miniaturized microfluidic formats for cell-based high-throughput screening.

作者信息

Upadhaya Sarvesh, Selvaganapathy Ponnambalam R

机构信息

Department of Mechanical Engineering, McMaster University, Canada.

出版信息

Crit Rev Biomed Eng. 2009;37(3):193-257. doi: 10.1615/critrevbiomedeng.v37.i3.10.

Abstract

Cell-based high-throughput screening (HTS) has become an important method used in pharmaceutical drug discovery, and is presently carried out using robots and micro-well plates. A microfluidic-based device for cell-based HTS using a traditional cell-culture protocol would be a key enabler in miniaturization and in increasing throughput without consequent detrimental effects on the physiological significance of the screen. In this paper, we illustrate the advances in miniaturization of cell-based HTS, especially using microfabrication and microfluidics. We also detail a novel microfluidic HTS device targeted for cell-based assays using traditional non-compartmentalized agar gel as a cell-culture medium and electric control over drug dose. The basic design of this device consists of a gel layer supported by a nanoporous membrane that is bonded to microchannels underneath it. The pores of the membrane are blocked everywhere except in selected regions that serve as fluidic interfaces between the microchannel below and the gel above. Upon application of an electric field, nanopores start to act as electrokinetic pumps. By selectively switching an array of such micropumps, a number of spots containing drug molecules are created simultaneously in the gel layer. By diffusion, drugs reach the top surface of the gel where cells are to be grown. Based on this principle, a number of different devices can be fabricated using microfabrication technology. The fabricated devices include a single drug spot-forming device, a multiple drug spot-forming device, and a microarray drug spot-forming device. By controlling the pumping potential and duration, spots sizes ranging from 200 mu;m to 6 mm in diameter and having inter-spot distances of 0.4 to 10 mm have been created. The absence of diffusional transport through the nanoporous interfaces without an electric field is demonstrated. A number of representative molecules, including surrogate drug molecules (trypan blue and methylene blue) and biomolecules (DNA and protein) were selected for demonstration purposes. A dosing range of 50 to 3000 mu;g and a spot density of 156 spots/cm2 were achieved. The drug spot density was found to be limited by molecular diffusion in gel, so a numerical study was carried to determine ways to increase density. Based on this simulation, a diffusion barrier was proposed, which uses a specially dimensioned (having shallow grooves) gel sheet to reduce diffusion.

摘要

基于细胞的高通量筛选(HTS)已成为药物研发中一种重要的方法,目前是使用机器人和微孔板来进行的。一种基于微流控技术、采用传统细胞培养方案的细胞高通量筛选设备,将成为实现小型化和提高通量的关键因素,且不会对筛选的生理意义产生不利影响。在本文中,我们阐述了基于细胞的高通量筛选在小型化方面的进展,尤其是利用微加工和微流控技术。我们还详细介绍了一种新型微流控高通量筛选设备,该设备针对基于细胞的检测,使用传统的非分隔琼脂凝胶作为细胞培养基,并通过电控制药物剂量。该设备的基本设计包括由纳米多孔膜支撑的凝胶层,纳米多孔膜与下方的微通道相连。除了在选定区域作为下方微通道与上方凝胶之间的流体界面外,膜的孔隙在各处均被堵塞。施加电场后,纳米孔开始充当电动泵。通过选择性地切换一系列这样的微泵,可在凝胶层中同时产生多个含有药物分子的斑点。通过扩散,药物到达凝胶的上表面,细胞将在该表面生长。基于这一原理,可使用微加工技术制造多种不同的设备。制造的设备包括单个药物斑点形成设备、多个药物斑点形成设备和微阵列药物斑点形成设备。通过控制泵浦电位和持续时间,已制造出直径范围为200μm至6mm、斑点间距为0.4至10mm的斑点。证明了在没有电场的情况下,通过纳米多孔界面不存在扩散传输。为了进行演示,选择了一些代表性分子,包括替代药物分子(台盼蓝和亚甲基蓝)和生物分子(DNA和蛋白质)。实现了50至3000μg的给药范围和156个斑点/cm²的斑点密度。发现药物斑点密度受凝胶中分子扩散的限制,因此进行了数值研究以确定增加密度的方法。基于该模拟,提出了一种扩散屏障,它使用具有特殊尺寸(有浅槽)的凝胶片来减少扩散。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验