Suppr超能文献

阿秒精度和皮米级结构的波包干涉测量。

Wave packet interferometry with attosecond precision and picometric structure.

机构信息

Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8585, Japan.

出版信息

Phys Chem Chem Phys. 2010;12(20):5189-98. doi: 10.1039/b927518e.

Abstract

Wave packet (WP) interferometry is applied to the vibrational WPs of the iodine molecule. Interference fringes of quantum waves weave highly regular space-time images called "quantum carpets." The structure of the carpet has picometre and femtosecond resolutions, and changes drastically depending on the amplitudes and phases of the vibrational eigenstates composing the WP. In this review, we focus on the situation where quantum carpets are created by two counter-propagating nuclear vibrational WPs. Such WPs can be prepared with either a single or double femtosecond (fs) laser pulse. In the single pulse scheme, the relevant situation appears around the half revival time. Similar situations can be generated with a pair of fs laser pulses whose relative phase is stabilized on the attosecond time scale. In the latter case we can design the quantum carpet by controlling the timing between the phase-locked pulses. We demonstrate this carpet design and visualize the designed carpets by the fs pump-probe measurements, tuning the probe wavelength to resolve the WP density-distribution along the internuclear axis with ~3 pm spatial resolution and ~100 fs temporal resolution.

摘要

波包(WP)干涉法被应用于碘分子的振动 WP。量子波的干涉条纹编织出高度规则的时空图像,称为“量子地毯”。地毯的结构具有皮米和飞秒分辨率,并且根据构成 WP 的振动本征态的幅度和相位剧烈变化。在这篇综述中,我们专注于由两个相反传播的核振动 WP 创建量子地毯的情况。这样的 WP 可以用单个或双飞秒(fs)激光脉冲来制备。在单脉冲方案中,相关情况出现在半恢复时间附近。类似的情况可以用一对 fs 激光脉冲产生,其相对相位在阿秒时间尺度上稳定。在后一种情况下,我们可以通过控制锁定脉冲之间的时间来设计量子地毯。我们通过 fs 泵浦-探测测量来演示这种地毯设计并可视化设计的地毯,通过调整探测波长来解析沿核间轴的 WP 密度分布,空间分辨率约为 3 pm,时间分辨率约为 100 fs。

相似文献

1
Wave packet interferometry with attosecond precision and picometric structure.
Phys Chem Chem Phys. 2010;12(20):5189-98. doi: 10.1039/b927518e.
2
Actively tailored spatiotemporal images of quantum interference on the picometer and femtosecond scales.
Phys Rev Lett. 2009 Mar 13;102(10):103602. doi: 10.1103/PhysRevLett.102.103602. Epub 2009 Mar 11.
3
Molecular wave packet interferometry and quantum entanglement.
J Chem Phys. 2005 Mar 1;122(9):094101. doi: 10.1063/1.1852456.
4
Probing molecular dynamics with attosecond resolution using correlated wave packet pairs.
Nature. 2003 Feb 20;421(6925):826-9. doi: 10.1038/nature01430.
5
Real-time observation of phase-controlled molecular wave-packet interference.
Phys Rev Lett. 2006 Mar 10;96(9):093002. doi: 10.1103/PhysRevLett.96.093002. Epub 2006 Mar 6.
6
Visualizing picometric quantum ripples of ultrafast wave-packet interference.
Science. 2006 Mar 17;311(5767):1589-92. doi: 10.1126/science.1121240.
7
Implementation of quantum gate operations in molecules with weak laser fields.
J Chem Phys. 2006 Mar 21;124(11):114110. doi: 10.1063/1.2172605.
10
Resolving vibrational wave-packet dynamics of D2(+) using multicolor probe pulses.
Opt Lett. 2012 Jul 15;37(14):2922-4. doi: 10.1364/OL.37.002922.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验