Suppr超能文献

具有非平稳输入的新生儿 EEG 的非线性模型。

A nonlinear model of newborn EEG with nonstationary inputs.

机构信息

University College Cork, Ireland.

出版信息

Ann Biomed Eng. 2010 Sep;38(9):3010-21. doi: 10.1007/s10439-010-0041-3. Epub 2010 Apr 20.

Abstract

Newborn EEG is a complex multiple channel signal that displays nonstationary and nonlinear characteristics. Recent studies have focussed on characterizing the manifestation of seizure on the EEG for the purpose of automated seizure detection. This paper describes a novel model of newborn EEG that can be used to improve seizure detection algorithms. The new model is based on a nonlinear dynamic system; the Duffing oscillator. The Duffing oscillator is driven by a nonstationary impulse train to simulate newborn EEG seizure and white Gaussian noise to simulate newborn EEG background. The use of a nonlinear dynamic system reduces the number of parameters required in the model and produces more realistic, life-like EEG compared with existing models. This model was shown to account for 54% of the linear variation in the time domain, for seizure, and 85% of the linear variation in the frequency domain, for background. This constitutes an improvement in combined performance of 6%, with a reduction from 48 to 4 model parameters, compared to an optimized implementation of the best performing existing model.

摘要

新生儿脑电图是一种复杂的多通道信号,呈现出非平稳和非线性的特征。最近的研究集中在对脑电图上癫痫发作的表现进行特征描述,以便进行自动癫痫检测。本文描述了一种新的新生儿脑电图模型,可用于改进癫痫检测算法。新模型基于非线性动力学系统;杜芬振荡器。杜芬振荡器由非平稳脉冲序列驱动,以模拟新生儿 EEG 癫痫发作和新生儿 EEG 背景的高斯白噪声。使用非线性动力学系统减少了模型中所需的参数数量,并产生了比现有模型更真实、更逼真的 EEG。该模型被证明可以解释 54%的癫痫发作时的时域线性变化,85%的背景时的频域线性变化。与最佳现有模型的优化实现相比,这一模型的综合性能提高了 6%,模型参数从 48 个减少到 4 个。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验