Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
J Am Chem Soc. 2010 May 12;132(18):6596-605. doi: 10.1021/ja102145g.
The structural evolution of negatively charged gold clusters (Au(n)(-)) in the medium size range for n = 27-35 has been investigated using photoelectron spectroscopy (PES) and theoretical calculations. New PES data are obtained using Ar-seeded He supersonic beams to achieve better cluster cooling, resulting in well-resolved spectra and revealing the presence of low-lying isomers in a number of systems. Density-functional theory calculations are used for global minimum searches. For each cluster anion, more than 200 low-lying isomers are generated using the basin-hopping global minimum search algorithm. The most viable structures and low-lying isomers are obtained using both the relative energies and comparisons between the simulated spectra and experimental PES data. The global minimum structures of Au(n)(-) (n = 27, 28, 30, and 32-35) are found to exhibit low-symmetry core-shell structures with the number of core atoms increasing with cluster size: Au(27)(-), Au(28)(-), and Au(30)(-) possess a one-atom core; Au(32)(-) features a three-atom triangular core; and Au(33)(-) to Au(35)(-) all contain a four-atom tetrahedral core. The global searches reveal that the tetrahedral core is a popular motif for low-lying structures of Au(33)(-) to Au(35)(-). The structural information forms the basis for future chemisorption studies to unravel the catalytic effects of gold nanoparticles.
采用光电离光谱(PES)和理论计算研究了中等尺寸范围(n = 27-35)的带负电荷金团簇(Au(n)(-))的结构演化。利用氩种子氦超声速束获得了新的 PES 数据,以实现更好的团簇冷却,从而获得了分辨率更好的光谱,并在许多体系中揭示了低能异构体的存在。使用密度泛函理论计算进行全局最小搜索。对于每个团簇阴离子,使用盆地跳跃全局最小搜索算法生成了 200 多个低能异构体。最可行的结构和低能异构体是通过相对能量以及模拟光谱与实验 PES 数据之间的比较来获得的。Au(n)(-)(n = 27、28、30 和 32-35)的全局最小结构被发现具有低对称的核壳结构,随着团簇尺寸的增加,核原子的数量增加:Au(27)(-)、Au(28)(-)和 Au(30)(-)具有一个原子核;Au(32)(-)具有一个三角形的三原子核;而 Au(33)(-)至 Au(35)(-)都包含一个四面体的四原子核。全局搜索表明,四面体核是 Au(33)(-)至 Au(35)(-)低能结构的流行基元。这些结构信息为未来的化学吸附研究奠定了基础,以揭示金纳米颗粒的催化效应。