Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany.
Acc Chem Res. 2010 Aug 17;43(8):1092-102. doi: 10.1021/ar900292q.
The nucleosides of glycol nucleic acid (GNA), with the backbone comprising just the three carbons and one stereocenter of propylene glycol (1,2-propanediol), probably constitute the simplest possible building blocks for a chemically stable nucleic acid that contains phosphodiester bonds. However, it was not until 2005 that the astonishing duplex formation properties of GNA homoduplexes were discovered in our laboratory. The R- and S-enantiomers of GNA, (R)-GNA and (S)-GNA, pair in like-symmetric combinations to form highly stable antiparallel duplexes in a Watson-Crick fashion, with thermal and thermodynamic stabilities exceeding those of analogous duplexes of DNA and RNA. Interestingly, (R)-GNA and (S)-GNA do not significantly cross-pair with each other, either in a parallel or antiparallel fashion. GNA discriminates strongly in favor of the Watson-Crick base-pairing scheme, with only slightly lower fidelity than DNA. Two (S)-GNA homoduplex structures recently determined by X-ray crystallography, one a brominated 6-mer duplex and the other an 8-mer duplex containing two copper(II) ions, reveal that the overall GNA double helix is distinct from canonical A- and B-form nucleic acids. The structure is perhaps best described as a helical ribbon loosely wrapped around the helix axis. Within the backbone, the propylene glycol nucleotides adopt two different conformations, gauche and anti, with respect to the torsional angles between the vicinal C3'-O and C2'-O bonds. A strikingly large backbone-base inclination results in extensive zipper-like interstrand and reduced intrastrand base-base interactions. This strong backbone-base inclination might explain the observation that neither the R- nor S-enantiomer of GNA cross-pairs with DNA, whereas (S)-GNA can interact with RNA strands that are devoid of G:C base pairs. Given the combination of structural simplicity, straightforward synthetic accessibility, and high duplex stability of GNA duplexes, GNA affords a promising nucleic acid scaffold for biotechnology and nanotechnology. Along these lines, we describe the functionalization of GNA duplexes through the incorporation of metal-ion-mediated base pairs. Finally, the properties of GNA discussed here reinforce its candidacy as one of the initial genetic molecules formed during the origins of life on Earth.
糖核酸(GNA)的核苷,其骨架仅由丙烯乙二醇(1,2-丙二醇)的三个碳原子和一个手性中心组成,可能是构成含有磷酸二酯键的化学稳定核酸的最简单可能的构建块。然而,直到 2005 年,我们实验室才发现 GNA 同源双链惊人的双链形成特性。GNA 的 R-和 S-对映异构体,(R)-GNA 和(S)-GNA,以相似对称的组合配对,形成高度稳定的反平行双链,以沃森-克里克方式,热稳定性和热力学稳定性超过类似的 DNA 和 RNA 双链。有趣的是,(R)-GNA 和(S)-GNA 彼此之间也没有明显的平行或反平行交叉配对。GNA 强烈倾向于沃森-克里克碱基配对方案,仅略低于 DNA 的保真度。最近通过 X 射线晶体学确定的两个(S)-GNA 同源双链结构,一个是溴化 6- mer 双链,另一个是含有两个铜(II)离子的 8- mer 双链,揭示了整个 GNA 双螺旋与典型的 A-和 B- 形式核酸不同。该结构可以最好地描述为围绕螺旋轴松散缠绕的螺旋带。在骨架内,丙烯乙二醇核苷酸相对于相邻 C3'-O 和 C2'-O 键之间的扭转角,采用两种不同的构象, gauche 和 anti。骨架-碱基的大倾斜导致广泛的拉链式链间和减少的链内碱基-碱基相互作用。这种强烈的骨架-碱基倾斜可能解释了观察到的 GNA 的 R-和 S-对映异构体都不会与 DNA 交叉配对,而(S)-GNA 可以与不含 G:C 碱基对的 RNA 链相互作用的现象。鉴于 GNA 双链的结构简单、合成易于获得以及高双链稳定性的组合,GNA 为生物技术和纳米技术提供了一种有前途的核酸支架。在此基础上,我们描述了通过掺入金属离子介导的碱基对来官能化 GNA 双链。最后,这里讨论的 GNA 的性质增强了其作为地球生命起源过程中形成的初始遗传分子之一的候选地位。