Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
J Chem Phys. 2010 Apr 14;132(14):144704. doi: 10.1063/1.3378278.
We have studied the influence of preadsorbed CO on the dissociative adsorption of H(2) on Ru(0001) with density functional theory calculations. For a coverage of 1/3 ML CO, we investigated different possible reaction paths for hydrogen dissociation using nudged elastic band and adaptive nudged elastic band calculations. One reaction path was studied in detail through an energy decomposition and molecular orbital type of analysis. The minimum barrier for H(2) dissociation is found to be 0.29 eV. At the barrier the H-H bond is hardly stretched. Behind this barrier a molecular chemisorption minimum is present. Next, the molecule overcomes a second barrier, with a second local chemisorption minimum behind it. To finally dissociate to chemisorbed atoms, the molecule has to overcome a third barrier. To move along the reaction path from reactants to products, the hydrogen molecule needs to rotate, and to significantly change its center-of-mass position. The procedure of mapping out reaction paths for H(2) reacting on low-index surfaces of bare metals (computing two-dimensional elbow plots for fixed impact high-symmetry sites and H(2) orientations parallel to the surface) does not work for H(2)+CO/Ru. The first barrier in the path is recovered, but the features of the subsequent stretch to the dissociative chemisorption minimum are not captured, because the molecule is not allowed to change its center-of-mass position or to rotate. The dissociative chemisorption of H(2) on CO/Ru(0001) is endoergic, in contrast to the case of H(2) on bare Ru(0001). The zero-point energy corrected energies of molecularly and dissociatively chemisorbed H(2) are very close, suggesting that it may be possible to detect molecularly chemisorbed H(2) on (sq.rt(3) x sq.rt(3))R30 degrees CO/Ru(0001). The presence of CO on the surface increases the barrier height to dissociation compared with bare Ru(0001). Based on an energy decomposition and molecular orbital analysis we attribute the increase in the barrier height mainly to an occupied-occupied interaction between the bonding H(2) sigma(g) orbital and the (surface-hybridized) CO 1pi orbitals, i.e., to site blocking. There is a small repulsive contribution to the barrier from the interaction between the H(2) molecule and the Ru part of the CO covered Ru surface, but it is smaller than one might expect based on the calculations of H(2) interacting with a clean Ru surface, and on calculations of H(2) interacting with the CO overlayer only. Actually, the analysis suggests that the Ru surface as a subsystem is (slightly) more reactive for the reaction path studied with CO preadsorbed on it than without it. Thus, the results indicate that the influence of CO on H(2) dissociation on Ru is not only a simple site-blocking effect, the electronic structure of the underlying Ru is changed.
我们研究了预吸附的 CO 对 Ru(0001)上 H(2)的离解吸附的影响,使用密度泛函理论计算。对于 1/3 ML CO 的覆盖度,我们使用 nudged 弹性带和自适应 nudged 弹性带计算研究了氢离解的不同可能反应路径。通过能量分解和分子轨道类型分析详细研究了一条反应路径。发现 H(2)离解的最小势垒为 0.29 eV。在势垒处,H-H 键几乎没有拉伸。在这个势垒后面存在分子化学吸附的最低点。接下来,分子克服第二个势垒,其后是第二个局部化学吸附的最低点。为了最终离解为化学吸附原子,分子必须克服第三个势垒。为了沿着从反应物到产物的反应路径移动,氢分子需要旋转并显著改变其质心位置。对于在裸露金属的低指数表面上进行 H(2)反应的反应路径进行映射(为固定撞击高对称点和与表面平行的 H(2)取向计算二维肘形图)不适用于 H(2)+CO/Ru。该路径中的第一个势垒被恢复,但随后伸展到离解化学吸附最低点的特征没有被捕获,因为分子不允许改变其质心位置或旋转。H(2)在 CO/Ru(0001)上的离解化学吸附是吸热的,与 H(2)在裸露 Ru(0001)上的情况相反。分子和离解化学吸附的 H(2)的零点能校正能量非常接近,这表明可能有可能检测到 (sq.rt(3) x sq.rt(3))R30 度 CO/Ru(0001)上的分子化学吸附的 H(2)。与裸露的 Ru(0001)相比,表面上 CO 的存在增加了离解的势垒高度。基于能量分解和分子轨道分析,我们将势垒高度的增加主要归因于成键 H(2)sigma(g)轨道和(表面杂化)CO 1pi 轨道之间的占据-占据相互作用,即位阻。H(2)分子与覆盖 CO 的 Ru 表面的 Ru 部分之间的相互作用对势垒有一个小的排斥贡献,但它比根据与清洁 Ru 表面相互作用的 H(2)的计算和仅与 CO 覆盖层相互作用的 H(2)的计算所预期的要小。实际上,分析表明,对于研究中存在预吸附 CO 的反应路径,Ru 表面作为一个子系统比没有 CO 时的反应性(略)更高。因此,结果表明,CO 对 Ru 上 H(2)离解的影响不仅是简单的位阻效应,还改变了底层 Ru 的电子结构。