Suppr超能文献

一种评估压缩参数在药物粉末材料分类中潜在应用的统计方法。

A statistical approach to evaluate the potential use of compression parameters for classification of pharmaceutical powder materials.

机构信息

Department of Pharmacy, University of Tromsø, Tromsø, Norway.

出版信息

Eur J Pharm Biopharm. 2010 Aug;75(3):425-35. doi: 10.1016/j.ejpb.2010.04.006. Epub 2010 Apr 18.

Abstract

The current work aims to investigate whether a multivariate statistical approach could reveal latent structures in compression data and group powders with respect to their compression behavior in a way that is consistent with an earlier proposed classification system. Seventeen pharmaceutically relevant materials, exhibiting a wide range of mechanical properties, were used as supplied, compressed, and parameters from three commonly used powder compression models (Kawakita parameters a and b(-1), the rearrangement index ab, the Shapiro f parameter and Heckel P(y)) were retrieved. Multivariate analysis of the compression parameters was done with a Principal Component Analysis (PCA). It was found that the latent structures could be divided into three main parts; the most variation was found in the direction associated with particle rearrangement, second largest variation was found in the direction described by the particle fragmentation propensity, and the least variation was found in the direction associated with the plasticity of the particles. This work demonstrates that a combination of the selected compression parameters could be utilized to find relevant differences in compression behavior for a wide range of materials, and that this information can be presented in an efficient way by applying multivariate data analysis techniques.

摘要

当前的工作旨在研究多元统计方法是否能够揭示压缩数据中的潜在结构,并根据先前提出的分类系统,将粉末按照其压缩行为进行分组。使用了十七种具有广泛机械性能的药物相关材料,原样、压缩后使用,并从三种常用的粉末压缩模型(川北参数 a 和 b(-1)、重新排列指数 ab、夏皮罗 f 参数和赫克尔 P(y))中检索参数。使用主成分分析(PCA)对压缩参数进行了多元分析。结果发现,潜在结构可以分为三个主要部分;与颗粒重排相关的方向变化最大,其次是与颗粒破碎倾向相关的方向,与颗粒塑性相关的方向变化最小。这项工作表明,选择的压缩参数的组合可以用于发现广泛材料的压缩行为中的相关差异,并且通过应用多元数据分析技术,可以以有效的方式呈现此信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验