Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
Phys Chem Chem Phys. 2010 May 7;12(17):4309-16. doi: 10.1039/b918589p. Epub 2010 Jan 18.
We report the synthesis of composite RuO(2)/poly(3,4-ethylenedioxythiophene) (PEDOT) nanotubes with high specific capacitance and fast charging/discharging capability as well as their potential application as electrode materials for a high-energy and high-power supercapacitor. RuO(2)/PEDOT nanotubes were synthesized in a porous alumina membrane by a step-wise electrochemical deposition method, and their structures were characterized using electron microscopy. Cyclic voltammetry was used to qualitatively characterize the capacitive properties of the composite RuO(2)/PEDOT nanotubes. Their specific capacitance, energy density and power density were evaluated by galvanostatic charge/discharge cycles at various current densities. The pseudocapacitance behavior of these composite nanotubes originates from ion diffusion during the simultaneous and parallel redox processes of RuO(2) and PEDOT. We show that the energy density (specific capacitance) of PEDOT nanotubes can be remarkably enhanced by electrodepositing RuO(2) into their porous walls and onto their rough internal surfaces. The flexible PEDOT prevents the RuO(2) from breaking and detaching from the current collector while the rigid RuO(2) keeps the PEDOT nanotubes from collapsing and aggregating. The composite RuO(2)/PEDOT nanotube can reach a high power density of 20 kW kg(-1) while maintaining 80% energy density (28 Wh kg(-1)) of its maximum value. This high power capability is attributed to the fast charge/discharge of nanotubular structures: hollow nanotubes allow counter-ions to readily penetrate into the composite material and access their internal surfaces, while a thin wall provides a short diffusion distance to facilitate ion transport. The high energy density originates from the RuO(2), which can store high electrical/electrochemical energy intrinsically. The high specific capacitance (1217 F g(-1)) which is contributed by the RuO(2) in the composite RuO(2)/PEDOT nanotube is realized because of the high specific surface area of the nanotubular structures. Such PEDOT/RuO(2) composite nanotube materials are an ideal candidate for the development of high-energy and high-power supercapacitors.
我们报告了一种具有高比电容和快速充放电能力的复合 RuO2/聚(3,4-亚乙基二氧噻吩)(PEDOT)纳米管的合成及其作为高能量和高功率超级电容器电极材料的潜在应用。通过分步电化学沉积法在多孔氧化铝膜中合成了 RuO2/PEDOT 纳米管,并通过电子显微镜对其结构进行了表征。循环伏安法用于定性表征复合 RuO2/PEDOT 纳米管的电容特性。通过在不同电流密度下的恒流充放电循环来评估其比电容、能量密度和功率密度。这些复合纳米管的赝电容行为源于 RuO2 和 PEDOT 的同时和并行氧化还原过程中的离子扩散。我们表明,通过将 RuO2 电沉积到其多孔壁中和粗糙的内部表面上,可以显著提高 PEDOT 纳米管的能量密度(比电容)。柔性的 PEDOT 可防止 RuO2 从集流器上断裂和脱落,而刚性的 RuO2 可防止 PEDOT 纳米管塌陷和聚集。复合 RuO2/PEDOT 纳米管可以达到 20 kW kg-1 的高功率密度,同时保持其最大能量密度(28 Wh kg-1)的 80%。这种高功率能力归因于纳米管状结构的快速充放电:中空纳米管允许抗衡离子容易地渗透到复合材料中并进入其内部表面,而薄壁提供短的扩散距离以促进离子传输。高能量密度源于 RuO2,它可以内在地存储高的电/电化学能量。由于复合 RuO2/PEDOT 纳米管中纳米管状结构的高比表面积,实现了 RuO2 贡献的高比电容(1217 F g-1)。这种 PEDOT/RuO2 复合纳米管材料是开发高能量和高功率超级电容器的理想候选材料。