Suppr超能文献

用 35GHz 的高分辨率 ESEEM 实验测定三价低自旋血红素配合物的结构和自旋密度。

Structure and spin density of ferric low-spin heme complexes determined with high-resolution ESEEM experiments at 35 GHz.

机构信息

Laboratory of Physical Chemistry, ETH Zürich, Wolfgang Pauli-Strasse 10, Switzerland.

出版信息

J Biol Inorg Chem. 2010 Aug;15(6):929-41. doi: 10.1007/s00775-010-0655-9. Epub 2010 Apr 21.

Abstract

The wide use of the heme group by nature is a consequence of its unusual "electronic flexibility." Major changes in the electronic structure of this molecule can result from small perturbations in its environment. To understand the way the electronic distribution is dictated by the structure of the heme site, it is extremely important to have methods to reliably determine both of them. In this work we propose a way to obtain this information in ferric low-spin heme centers via the determination of g, A, and Q tensors of the coordinated nitrogens using electron spin echo envelope modulation experiments at Q-band microwave frequencies. The results for two bisimidazole heme model complexes, namely, PPIX(Im)(2) and CPIII(Im)(2), where PPIX is protoporphyrin IX, CPIII is coproporphyrin III, and Im is imidazole, selectively labeled with (15)N on the heme or imidazole nitrogens are presented. The planes of the axial ligands were found to be parallel and oriented approximately along one of the N-Fe-N directions of the slightly ruffled porphyrin ring (approximately 10 degrees ). The spin density was determined to reside in an iron d orbital perpendicular to the heme plane and oriented along the other porphyrin N-Fe-N direction, perpendicular to the axial imidazoles. The benefit of the method presented here lies in the use of Q-band microwave frequencies, which improves the orientation selection, results in no/fewer combination lines in the spectra, and allows separation of the contributions of hyperfine and quadrupole interactions due to the fulfillment of the exact cancellation condition at g ( Z ) and the possibility of performing hyperfine decoupling experiments at the g ( X ) observer position. These experimental advantages make the interpretation of the spectra straightforward, which results in precise and reliable determination of the structure and spin distribution.

摘要

自然界中血红素基团的广泛应用是其异常“电子灵活性”的结果。该分子的电子结构的重大变化可能是由于其环境中的微小扰动而导致的。为了了解电子分布是如何由血红素部位的结构决定的,拥有可靠地确定这两者的方法是极其重要的。在这项工作中,我们提出了一种通过电子自旋回波包络调制实验在 Q 波段微波频率下确定配位氮的 g、A 和 Q 张量来获得亚铁低自旋血红素中心的这种信息的方法。结果表明,两种双咪唑血红素模型配合物,即 PPIX(Im)(2)和 CPIII(Im)(2),其中 PPIX 是原卟啉 IX,CPIII 是粪卟啉 III,Im 是咪唑,选择性标记在血红素或咪唑氮上的(15)N。轴向配体的平面被发现是平行的,并且大致沿着稍微起皱的卟啉环的一个 N-Fe-N 方向(约 10 度)取向。确定自旋密度位于垂直于血红素平面的铁 d 轨道中,并沿着另一个卟啉 N-Fe-N 方向取向,垂直于轴向咪唑。这里提出的方法的优点在于使用 Q 波段微波频率,这改善了取向选择,导致在光谱中没有/较少的组合线,并允许由于在 g(Z)处满足精确抵消条件以及在 g(X)观测器位置进行超精细去耦实验而分离超精细和四极相互作用的贡献。这些实验优势使得光谱的解释变得简单直接,从而能够精确可靠地确定结构和自旋分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验