Tucci Mauro, Raugi Marco
Department of Electric Systems and Automation, University of Pisa, 56122 Pisa, Italy.
IEEE Trans Neural Netw. 2010 Jun;21(6):948-60. doi: 10.1109/TNN.2010.2046180. Epub 2010 Apr 22.
In this paper, a training method for the formation of topology preserving maps is introduced. The proposed approach presents a sequential formulation of the self-organizing map (SOM), which is based on a new model of the neuron, or processing unit. Each neuron acts as a finite impulse response (FIR) system, and the coefficients of the filters are adaptively estimated during the sequential learning process, in order to minimize a distortion measure of the map. The proposed FIR-SOM model deals with static distributions and it computes an ordered set of centroids. Additionally, the FIR-SOM estimates the learning dynamic of each prototype using an adaptive FIR model. A noteworthy result is that the optimized coefficients of the FIR processes tend to represent a moving average filter, regardless of the underlying input distribution. The convergence of the resulting model is analyzed numerically and shows good properties with respect to the classic SOM and other unsupervised neural models. Finally, the optimal FIR coefficients are shown to be useful for visualizing the cluster densities.
本文介绍了一种用于形成拓扑保持映射的训练方法。所提出的方法给出了自组织映射(SOM)的一种顺序公式,该公式基于一种新的神经元模型或处理单元。每个神经元充当一个有限脉冲响应(FIR)系统,并且在顺序学习过程中自适应地估计滤波器的系数,以便最小化映射的失真度量。所提出的FIR-SOM模型处理静态分布,并计算一组有序的质心。此外,FIR-SOM使用自适应FIR模型估计每个原型的学习动态。一个值得注意的结果是,FIR过程的优化系数倾向于表示一个移动平均滤波器,而与潜在的输入分布无关。对所得模型的收敛性进行了数值分析,结果表明相对于经典SOM和其他无监督神经模型,该模型具有良好的性能。最后,最优FIR系数被证明可用于可视化聚类密度。