Suppr超能文献

Optical Properties of Nested Pyramidal Nanoshells.

作者信息

Lin Julia Y, Hasan Warefta, Yang Jiun-Chan, Odom Teri W

机构信息

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113.

出版信息

J Phys Chem C Nanomater Interfaces. 2010 Jan 8;114(16):7432-7435. doi: 10.1021/jp910627r.

Abstract

This paper describes the fabrication and characterization of nested Au pyramidal nanoshells. These particles exhibited two plasmon resonances at visible and near-infrared wavelengths that could be manipulated depending on the size of the gap between inner and outer pyramidal shells. We found that larger gaps (30 nm) exhibited much larger Raman scattering responses compared to smaller gaps (5 nm) in the nested pyramidal shells. The SERS-activity of these anisotropic particles can be optimized by adjusting the distances between the inner and outer Au shells.

摘要

相似文献

1
Optical Properties of Nested Pyramidal Nanoshells.
J Phys Chem C Nanomater Interfaces. 2010 Jan 8;114(16):7432-7435. doi: 10.1021/jp910627r.
2
Optical properties of anisotropic core-shell pyramidal particles.
J Phys Chem A. 2009 Apr 23;113(16):4265-8. doi: 10.1021/jp810837u.
4
Limitations on the optical tunability of small diameter gold nanoshells.
Langmuir. 2009 Oct 6;25(19):11777-85. doi: 10.1021/la901249j.
5
Nanosphere-in-a-nanoegg: damping the high-order modes induced by symmetry breaking.
Nanoscale Res Lett. 2015 Jan 28;10:17. doi: 10.1186/s11671-015-0728-3. eCollection 2015.
8
Manipulating the optical properties of pyramidal nanoparticle arrays.
J Phys Chem B. 2006 Jul 27;110(29):14028-31. doi: 10.1021/jp063226i.
9
Surface-enhanced Raman scattering from Au nanorods, nanotriangles, and nanostars with tuned plasmon resonances.
Phys Chem Chem Phys. 2023 Nov 22;25(45):30903-30913. doi: 10.1039/d3cp04541b.
10
Raman Scattering Enhancements Due to Super- and Subradiant Collective Plasmon Modes on Large-Area 2D-Au Arrays.
ACS Appl Mater Interfaces. 2025 Jun 4;17(22):33176-33190. doi: 10.1021/acsami.5c04804. Epub 2025 May 22.

引用本文的文献

1
Nanoparticle SERS substrates with 3D Raman-active volumes.
Chem Sci. 2011 Aug 1;2(8):1435-1439. doi: 10.1039/C1SC00125F.
2
Multi-scale Plasmonic Nanoparticles and the Inverse Problem.
J Phys Chem Lett. 2012 Sep 20;3(18):2611-2616. doi: 10.1021/jz300886z. Epub 2012 Aug 29.
3
Gold Nanopyramids Assembled into High-Order Stacks Exhibit Increased SERS Response.
J Phys Chem Lett. 2010 Apr 1;1(7):1046-1050. doi: 10.1021/jz100095b.

本文引用的文献

1
Crucial role of the adhesion layer on the plasmonic fluorescence enhancement.
ACS Nano. 2009 Jul 28;3(7):2043-8. doi: 10.1021/nn900460t. Epub 2009 Jun 11.
3
Enhanced nanoplasmonic optical sensors with reduced substrate effect.
Nano Lett. 2008 Nov;8(11):3893-8. doi: 10.1021/nl8023142. Epub 2008 Oct 10.
4
Probing the structure of single-molecule surface-enhanced Raman scattering hot spots.
J Am Chem Soc. 2008 Sep 24;130(38):12616-7. doi: 10.1021/ja8051427. Epub 2008 Aug 30.
5
Multiscale patterning of plasmonic metamaterials.
Nat Nanotechnol. 2007 Sep;2(9):549-54. doi: 10.1038/nnano.2007.252. Epub 2007 Aug 19.
6
Electromagnetic energy transport via linear chains of silver nanoparticles.
Opt Lett. 1998 Sep 1;23(17):1331-3. doi: 10.1364/ol.23.001331.
7
8
Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators.
Small. 2007 Feb;3(2):294-9. doi: 10.1002/smll.200600409.
9
Designing, fabricating, and imaging Raman hot spots.
Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13300-3. doi: 10.1073/pnas.0605889103. Epub 2006 Aug 24.
10
Manipulating the optical properties of pyramidal nanoparticle arrays.
J Phys Chem B. 2006 Jul 27;110(29):14028-31. doi: 10.1021/jp063226i.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验