Suppr超能文献

一种改进的用于近红外光谱定量分析的提升偏最小二乘法。

An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis.

机构信息

Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.

出版信息

Anal Chim Acta. 2010 May 7;666(1-2):32-7. doi: 10.1016/j.aca.2010.03.036. Epub 2010 Mar 25.

Abstract

Boosting partial least squares (PLS) has been used for regression to improve the predictive accuracy of PLS models, however, there are still problems when the outliers exist in the calibration dataset. To make the method robust and enhance its prediction ability, an improved boosting PLS is proposed and applied in quantitative analysis of near-infrared (NIR) spectral datasets. In the method, a robust step is added to weaken the effect of the outliers on the model. On the other hand, the loss function defined with relative errors is suggested for updating the sampling weight during the boosting procedure. In addition, the ensemble prediction by the weighted mean of the models in the boosting series is found to be more effective than the commonly used weighted median. The performance of the improved method is tested with two large NIR datasets of industrial production. The method was found to have a marked superiority in robustness and prediction ability, particularly when outliers exist.

摘要

提升偏最小二乘法 (PLS) 已被用于回归,以提高 PLS 模型的预测准确性,然而,当校准数据集存在异常值时,仍然存在问题。为了使方法更稳健并增强其预测能力,提出了一种改进的提升 PLS 方法,并将其应用于近红外 (NIR) 光谱数据集的定量分析中。在该方法中,添加了一个稳健步骤来削弱异常值对模型的影响。另一方面,建议使用相对误差定义的损失函数来更新提升过程中的采样权重。此外,发现通过提升系列中的模型的加权平均值进行集成预测比常用的加权中位数更有效。该方法的性能通过两个大型工业生产的 NIR 数据集进行了测试。该方法在稳健性和预测能力方面表现出明显的优势,尤其是当存在异常值时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验