Suppr超能文献

通过基因表达谱分析对卵巢癌进行分子特征描述。

Molecular characterization of ovarian cancer by gene-expression profiling.

机构信息

Department of Medical Oncology, Hospital Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain.

出版信息

Gynecol Oncol. 2010 Jul;118(1):88-92. doi: 10.1016/j.ygyno.2010.03.012. Epub 2010 May 1.

Abstract

Ovarian cancer is the second most common gynecologic malignancy, and represents the fifth most common cause of cancer death in women in the United States. The age at diagnosis, extent of disease, success of primary surgery, and the histopathological features of the tumor are important prognostic markers. Epithelial ovarian carcinomas are classified into four major categories: serous, mucinous, endometrioid, and clear cell. Each subtypes of ovarian carcinoma are known to have different clinical characteristics and biological behaviour and response to chemotherapy. Molecular studies have supported for the notion that the different histological types of ovarian cancer likely represent histopathologically, genetically, and biologically distinct diseases. Microarray-based profiling technologies have provided an opportunity to simultaneously examine the relationship between thousands of genes and clinical phenotypes. In this review, we will summarise the current gene-expression profiles that address the classification of ovarian cancer into molecular subtypes with different outcomes.

摘要

卵巢癌是第二常见的妇科恶性肿瘤,也是美国女性癌症死亡的第五大常见原因。诊断时的年龄、疾病的范围、初次手术的成功以及肿瘤的组织病理学特征是重要的预后标志物。上皮性卵巢癌分为四大类:浆液性、黏液性、子宫内膜样和透明细胞。每种卵巢癌亚型都具有不同的临床特征、生物学行为以及对化疗的反应。分子研究支持这样一种观点,即不同组织学类型的卵巢癌可能代表在组织病理学、遗传学和生物学上不同的疾病。基于微阵列的基因表达谱分析技术为同时研究数千个基因与临床表型之间的关系提供了机会。在这篇综述中,我们将总结目前的基因表达谱,这些表达谱将卵巢癌分为具有不同预后的分子亚型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验