Department of Biological Sciences, Vanderbilt Brain Institute, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA.
Dis Model Mech. 2010 Jul-Aug;3(7-8):471-85. doi: 10.1242/dmm.004598. Epub 2010 May 4.
Fragile X syndrome (FXS), resulting solely from the loss of function of the human fragile X mental retardation 1 (hFMR1) gene, is the most common heritable cause of mental retardation and autism disorders, with syndromic defects also in non-neuronal tissues. In addition, the human genome encodes two closely related hFMR1 paralogs: hFXR1 and hFXR2. The Drosophila genome, by contrast, encodes a single dFMR1 gene with close sequence homology to all three human genes. Drosophila that lack the dFMR1 gene (dfmr1 null mutants) recapitulate FXS-associated molecular, cellular and behavioral phenotypes, suggesting that FMR1 function has been conserved, albeit with specific functions possibly sub-served by the expanded human gene family. To test evolutionary conservation, we used tissue-targeted transgenic expression of all three human genes in the Drosophila disease model to investigate function at (1) molecular, (2) neuronal and (3) non-neuronal levels. In neurons, dfmr1 null mutants exhibit elevated protein levels that alter the central brain and neuromuscular junction (NMJ) synaptic architecture, including an increase in synapse area, branching and bouton numbers. Importantly, hFMR1 can, comparably to dFMR1, fully rescue both the molecular and cellular defects in neurons, whereas hFXR1 and hFXR2 provide absolutely no rescue. For non-neuronal requirements, we assayed male fecundity and testes function. dfmr1 null mutants are effectively sterile owing to disruption of the 9+2 microtubule organization in the sperm tail. Importantly, all three human genes fully and equally rescue mutant fecundity and spermatogenesis defects. These results indicate that FMR1 gene function is evolutionarily conserved in neural mechanisms and cannot be compensated by either FXR1 or FXR2, but that all three proteins can substitute for each other in non-neuronal requirements. We conclude that FMR1 has a neural-specific function that is distinct from its paralogs, and that the unique FMR1 function is responsible for regulating neuronal protein expression and synaptic connectivity.
脆性 X 综合征(FXS)仅由人类脆性 X 智力低下 1 基因(hFMR1)功能丧失引起,是智力低下和自闭症障碍最常见的遗传性病因,在非神经元组织中也存在综合征缺陷。此外,人类基因组编码两个密切相关的 hFMR1 旁系同源物:hFXR1 和 hFXR2。相比之下,果蝇基因组仅编码一个与所有三个人类基因具有密切序列同源性的 dFMR1 基因。缺乏 dFMR1 基因的果蝇(dfmr1 缺失突变体)重现了与 FXS 相关的分子、细胞和行为表型,这表明 FMR1 功能已经保守,尽管可能由扩展的人类基因家族提供特定的功能。为了测试进化保守性,我们使用三种人类基因的组织靶向转基因表达在果蝇疾病模型中,以研究分子、神经元和非神经元水平上的功能。在神经元中,dfmr1 缺失突变体表现出升高的蛋白水平,改变了中枢脑和肌神经节(NMJ)突触结构,包括突触面积、分支和末梢数量的增加。重要的是,hFMR1 可以与 dFMR1 相比,完全挽救神经元中的分子和细胞缺陷,而 hFXR1 和 hFXR2 则完全没有挽救作用。对于非神经元的要求,我们检测了雄性生育能力和睾丸功能。dfmr1 缺失突变体由于精子尾部 9+2 微管组织的破坏而有效地不育。重要的是,三种人类基因都完全且平等地挽救了突变体的生育能力和精子发生缺陷。这些结果表明,FMR1 基因功能在神经机制中是进化保守的,不能由 FXR1 或 FXR2 代偿,但这三种蛋白质可以在非神经元需求上相互替代。我们得出结论,FMR1 具有与旁系同源物不同的神经特异性功能,并且独特的 FMR1 功能负责调节神经元蛋白表达和突触连接。
Int J Mol Sci. 2017-5-16
Life Sci. 2018-12-5
Int J Mol Sci. 2024-11-2
Cell Tissue Res. 2024-11
J Neurodev Disord. 2024-6-13
Front Cell Dev Biol. 2022-7-6
Front Neural Circuits. 2009-8-20
J Neurophysiol. 2009-5
J Neurosci. 2009-2-18