缺氧在乳腺癌原发肿瘤生长和器官特异性转移中的体内动力学及功能差异。
In vivo dynamics and distinct functions of hypoxia in primary tumor growth and organotropic metastasis of breast cancer.
机构信息
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
出版信息
Cancer Res. 2010 May 15;70(10):3905-14. doi: 10.1158/0008-5472.CAN-09-3739. Epub 2010 May 4.
Tumor hypoxia is known to activate angiogenesis, anaerobic glycolysis, invasion, and metastasis. However, a comparative analysis of the potentially distinct functions of hypoxia in primary tumor growth and organ-specific metastasis has not been reported. Here, we show distinct hypoxia kinetics in tumors generated by the MDA-MB-231 breast cancer sublines with characteristically different primary tumor growth rates and organotropic metastasis potentials. Hypoxia-induced angiogenesis promotes both primary tumor growth and lung metastasis but is nonessential for bone metastasis. Microarray profiling revealed that hypoxia enhances the expression of a significant number of genes in the lung metastasis signature, but only activates a few bone metastasis genes, among which DUSP1 was functionally validated in this study. Despite the different mechanisms by which hypoxia promotes organ-specific metastasis, inhibition of HIF-1alpha with a dominant-negative form of HIF-1alpha or 2-methoxyestradiol reduced metastasis to both lung and bone. Consistent with the extensive functional overlap of hypoxia in promoting primary tumor growth and lung metastasis, a 45-gene hypoxia response signature efficiently stratifies breast cancer patients with low or high risks of lung metastasis, but not for bone metastasis. Our study shows distinct functions of hypoxia in regulating angiogenesis and metastasis in different organ microenvironments and establishes HIF-1alpha as a promising target for controlling organotropic metastasis of breast cancer.
肿瘤缺氧已知会激活血管生成、无氧糖酵解、侵袭和转移。然而,关于缺氧在原发性肿瘤生长和器官特异性转移中的潜在不同功能的比较分析尚未报道。在这里,我们展示了 MDA-MB-231 乳腺癌亚系生成的肿瘤中不同的缺氧动力学,这些亚系具有明显不同的原发性肿瘤生长速率和器官趋向性转移潜力。缺氧诱导的血管生成促进原发性肿瘤生长和肺转移,但对骨转移并非必需。微阵列分析显示,缺氧增强了肺转移特征基因的大量表达,但仅激活了少数骨转移基因,其中 DUSP1 在本研究中得到了功能验证。尽管缺氧促进器官特异性转移的机制不同,但用 HIF-1alpha 的显性失活形式或 2-甲氧基雌二醇抑制 HIF-1alpha 减少了肺和骨转移。与缺氧在促进原发性肿瘤生长和肺转移方面的广泛功能重叠一致,一个包含 45 个基因的缺氧反应特征能够有效地将肺癌转移风险低或高的乳腺癌患者分层,但不能用于骨转移。我们的研究表明,缺氧在调节不同器官微环境中的血管生成和转移方面具有不同的功能,并确立 HIF-1alpha 作为控制乳腺癌器官趋向性转移的有前途的靶点。