Suppr超能文献

抗氧化剂功能障碍:乙基丙二酸尿症神经毒性的潜在风险。

Antioxidant dysfunction: potential risk for neurotoxicity in ethylmalonic aciduria.

机构信息

Research Unit for Molecular Medicine, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, Aarhus N, Denmark.

出版信息

J Inherit Metab Dis. 2010 Jun;33(3):211-22. doi: 10.1007/s10545-010-9086-6. Epub 2010 May 5.

Abstract

Mitochondrial dysfunction and oxidative stress are central to the molecular basis of several human diseases associated with neuromuscular disabilities. We hypothesize that mitochondrial dysfunction also contributes to the neuromuscular symptoms observed in patients with ethylmalonic aciduria and homozygosity for ACADS c.625G>A-a common variant of the short-chain acyl-coenzyme A (CoA) dehydrogenase (SCAD) enzyme in the mitochondrial fatty acid oxidation pathway. This study sought to identify the specific factors that initiate cell dysfunction in these patients. We investigated fibroblast cultures from 10 patients with neuromuscular disabilities, elevated levels of ethylmalonic acid (EMA) (>50 mmol/mol creatinine), and ACADS c.625G>A homozygosity. Functional analyses, i.e., ACADS gene and protein expression as well as SCAD enzyme activity measurements, were performed together with a global nano liquid chromatography tandem mass spectroscopy (nano-LC-MS/MS)-based screening of the mitochondrial proteome in patient fibroblasts. Moreover, cell viability of patient fibroblasts exposed to menadione-induced oxidative stress was evaluated. Loss of SCAD function was detected in the patient group, most likely due to decreased ACADS gene expression and/or elimination of misfolded SCAD protein. Analysis of the mitochondrial proteome in patient fibroblasts identified a number of differentially expressed protein candidates, including reduced expression of the antioxidant superoxide dismutase 2 (SOD2). Additionally, patient fibroblasts demonstrated significantly higher sensitivity to oxidative stress than control fibroblasts. We propose that reduced mitochondrial antioxidant capacity is a potential risk factor for ACADS c.625G>A-associated ethylmalonic aciduria and that mitochondrial dysfunction contributes to the neurotoxicity observed in patients.

摘要

线粒体功能障碍和氧化应激是几种与神经肌肉障碍相关的人类疾病的分子基础的核心。我们假设线粒体功能障碍也导致了乙基丙二酸尿症患者和 ACADS c.625G>A 纯合子(线粒体脂肪酸氧化途径中的短链酰基辅酶 A(CoA)脱氢酶(SCAD)酶的常见变体)中观察到的神经肌肉症状。本研究旨在确定引发这些患者细胞功能障碍的具体因素。我们研究了来自 10 名神经肌肉障碍、乙基丙二酸(EMA)水平升高(>50mmol/mol 肌酐)和 ACADS c.625G>A 纯合子的患者的成纤维细胞培养物。进行了功能分析,即 ACADS 基因和蛋白表达以及 SCAD 酶活性测量,同时对患者成纤维细胞中的线粒体蛋白质组进行了基于全局纳米液相色谱串联质谱(nano-LC-MS/MS)的筛选。此外,还评估了暴露于 menadione 诱导的氧化应激的患者成纤维细胞的细胞活力。在患者组中检测到 SCAD 功能丧失,最可能是由于 ACADS 基因表达降低和/或错误折叠的 SCAD 蛋白消除。对患者成纤维细胞的线粒体蛋白质组分析鉴定了许多差异表达的蛋白候选物,包括抗氧化剂超氧化物歧化酶 2(SOD2)的表达降低。此外,与对照成纤维细胞相比,患者成纤维细胞对氧化应激的敏感性明显更高。我们提出,减少的线粒体抗氧化能力是 ACADS c.625G>A 相关的乙基丙二酸尿症的潜在危险因素,并且线粒体功能障碍导致了患者中观察到的神经毒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验