Alsamman A, Azzam R M A
Department of Electrical Engineering, University of New Orleans, New Orleans, Louisiana 70148, USA.
J Opt Soc Am A Opt Image Sci Vis. 2010 May 1;27(5):1156-61. doi: 10.1364/JOSAA.27.001156.
For a given pseudo-Brewster angle phi(pB) of minimum reflectance |r(p)| of p-polarized light at a dielectric-conductor interface, the second-Brewster angle phi(2B) of minimum reflectance ratio |rho|=|r(p)|/|r(s)| of the p and s polarizations is determined for all possible values of the complex relative dielectric function epsilon that lead to the same phi(pB). The difference phi(2B)-phi(pB) is considered as a function of phi(pB) and theta=arg(epsilon). For any given phi(pB), the difference phi(2B)-phi(pB)=0 at theta=0(epsilon(r)>0,epsilon(i)=0) increases monotonically as a function of theta and reaches maximum value {phi(2B)-phi(pB)}(max) in the limit as theta-->180 degrees (epsilon(r)<0,epsilon(i)=0). This maximum difference {phi(2B)-phi(pB)}(max) has an upper limit of 15.701 degrees when phi(pB)=28.195 degrees.
对于电介质 - 导体界面处p偏振光的最小反射率|r(p)|的给定伪布儒斯特角φ(pB),针对导致相同φ(pB)的复相对介电常数ε的所有可能值,确定p偏振和s偏振的最小反射率比|ρ| = |r(p)| / |r(s)|的第二布儒斯特角φ(2B)。将差值φ(2B) - φ(pB)视为φ(pB)和θ = arg(ε)的函数。对于任何给定的φ(pB),差值φ(2B) - φ(pB)在θ = 0(ε(r)>0,ε(i)=0)时为0,随θ单调增加,并在θ趋近于180度(ε(r)<0,ε(i)=0)时达到最大值{φ(2B) - φ(pB)}(max)。当φ(pB)=28.195度时,该最大差值{φ(2B) - φ(pB)}(max)的上限为15.701度。