Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6.
Org Biomol Chem. 2010 May 21;8(10):2285-308. doi: 10.1039/b923983a. Epub 2010 Mar 2.
In the domain of organic chemistry, S(N)Ar substitutions represent a class of reactions of overwhelming importance, both in synthesis and in the understanding of structure-reactivity relationships, especially the role of sigma-complex intermediates. The primary factor necessary for achievement of S(N)Ar reactions is the presence of a good leaving group, which allows facile rearomatization of the ring undergoing nucleophilic attack. Consistent is the finding that the superelectrophilic chloronitrobenzofuroxans--or furazans--exhibit a very high S(N)Ar reactivity, allowing a number of C-C, C-N, C-O couplings to be achieved that are not accessible with the classical series of nitro-substituted aromatics. Of particular interest is the synthesis of a number of indoles, indolizines, pyrroles and extended pi-excessive aromatic structures like azulene substituted by superelectrophilic moieties. The remarkable driving force for the facile completion of these reactions is the 10 orders of magnitude greater reactivity of 10pi-electron-deficient heteroaromatics such as 4,6-dinitrobenzofuroxan (DNBF) than of the most reactive trinitrobenzene derivatives in sigma-adduct complexation. Among the factors that have been recognized as governing superelectrophilicity, there is the poor aromaticity of 6-membered 10pi-electron structures investigated, with a common origin for sigma-complexation and pericyclic processes. A remarkable capacity of these structures is actually to contribute to a variety of Diels-Alder reactions. As an example, the DNBF molecule formally behaves as a nitroalkene, being susceptible to act as a dienophile as well as a heterodiene. Another remarkable Diels-Alder pathway is the capacity of the 6-membered carbocyclic ring of DNBF to act as a carbodiene. Also noteworthy is the successful Diels-Alder trapping of the dinitroso intermediate associated with 1-oxide/3-oxide tautomerism of the furoxan moiety of 4-aza-6-nitrobenzofuroxan. A point of fundamental importance in taking advantage of the reactivity of superelectrophilic structures at hand has been a successful calibration of their reactivity within the electrophilicity E scale developed by Mayr to describe nucleophile-electrophile combinations in general. It has thus been established that the E parameters measuring the electrophilicity of neutral heteroaromatics lie in the same region of the E scale as a number of highly reactive cationic reagents. Besides a reactivity rather similar to that of the 4-nitrobenzenediazonium cation (vide supra), the most electrophilic neutral molecules (DNBF, DNTP, DNBZ) are as electrophilic as tropylium cations or a number of metal-coordinated carbenium ions. Furthermore, there is a remarkable link between the pK(a)(H(2)O) and E scales, as evidenced by the existence of a unique linear relationship spanning more than 20 orders of reactivity. This relationship appears as being a nice probe to predict the feasibility of S(N)Ar substitutions and related sigma-complexation processes. Also revealing in terms of feasibility of the reactions is the existence of a close correlation between the electrochemical oxidation potential E degrees of sigma-adducts and their positioning on the pK(a)(H(2)O) scale. Our data can also be used to evaluate the potential of a theoretical model recently derived from DFT calculations, namely the global electrophilicity index omega, for the description of nucleophile-electrophile combinations. While showing several significant deviations, a reasonably linear omega vs. pK(a)(H(2)O) relationship is obtained when restricting the correlation to structurally similar electrophilic moieties. On this basis, valuable information could be derived regarding the polar character of some DA reactions. Overall, the global electrophilicity (omega) approach may be a promising avenue in future work of electrophile-nucleophile combinations.
在有机化学领域,S(N)Ar 取代反应是一类非常重要的反应,无论是在合成还是在理解结构-反应性关系方面,特别是 sigma-配合物中间体的作用。实现 S(N)Ar 反应的必要因素是存在良好的离去基团,这使得正在进行亲核攻击的环易于重新芳构化。一致的发现是,超亲电的氯代硝基苯并呋咱(或呋咱)表现出非常高的 S(N)Ar 反应性,允许实现许多与经典系列硝基取代芳香族化合物无法实现的 C-C、C-N、C-O 偶联。特别有趣的是合成了许多吲哚、吲哚嗪、吡咯和扩展的 pi-过剩芳香结构,如由超亲电取代基取代的薁。这些反应易于完成的显著驱动力是 10pi 电子缺电子杂芳族化合物(如 4,6-二硝基苯并呋咱(DNBF))比最活泼的三硝基苯衍生物在 sigma-加合物络合中的反应性高 10 个数量级。在已被认为控制超亲电性的因素中,有一个是研究的 6 元 10pi 电子结构的不良芳香性,sigma-配合物和周环过程具有共同的起源。这些结构的一个显著能力实际上是有助于各种 Diels-Alder 反应。例如,DNBF 分子形式上表现为硝基烯烃,容易作为亲二烯体和杂双烯体起作用。另一个显著的 Diels-Alder 途径是 DNBF 的 6 元碳环作为碳二烯的能力。值得注意的是,与呋咱部分的 1-氧化物/3-氧化物互变异构有关的二亚硝基中间体能成功地进行 Diels-Alder 捕获。利用手头超亲电结构的反应性的一个基本重要点是成功地在 Mayr 开发的亲电指数 E 尺度内对其反应性进行校准,以描述一般的亲核-亲电组合。因此,测量中性杂芳族化合物亲电性的 E 参数位于 E 尺度的同一区域,与一些高反应性的阳离子试剂相当。除了与 4-硝基苯重氮阳离子(见上文)相当的反应性外,最亲电的中性分子(DNBF、DNTP、DNBZ)与 tropylium 阳离子或一些金属配位的碳阳离子一样亲电。此外,pK(a)(H(2)O)和 E 尺度之间存在显著的联系,这一点可以通过存在跨越 20 多个反应性的独特线性关系来证明。这种关系似乎是预测 S(N)Ar 取代和相关 sigma-配合物过程可行性的一个很好的探针。从可行性的角度来看,sigma-加合物的电化学氧化电位 E 度与它们在 pK(a)(H(2)O)尺度上的位置之间存在密切的相关性,这一点也很有启发性。我们的数据也可以用于评估最近从 DFT 计算中得出的理论模型的潜力,即全局亲电性指数 omega,用于描述亲核-亲电组合。虽然存在几个显著的偏差,但当将相关性限制在结构相似的亲电基团上时,会得到一个相当线性的 omega 与 pK(a)(H(2)O)关系。在此基础上,可以得出有关一些 DA 反应极性的有价值的信息。总体而言,全局亲电性(omega)方法可能是未来亲电-亲核组合工作的一个有前途的途径。