Institute of Biomedical Engineering, Department of Cell Biology, Universitätsklinikum Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH), Pauwelsstrasse, 30, D-52074 Aachen, Germany.
Biomaterials. 2010 Aug;31(22):5759-71. doi: 10.1016/j.biomaterials.2010.04.015. Epub 2010 May 8.
Biomaterials are used in several health-related applications ranging from tissue regeneration to antigen-delivery systems. Yet, biomaterials often cause inflammatory reactions suggesting that they profoundly alter the homeostasis of host immune cells such as dendritic cells (DCs). Thus, there is a major need to understand how biomaterials affect the function of these cells. In this study, we have analysed the influence of chemically and physically diverse biomaterials on DCs using several murine knockouts. DCs can sense biomedical polymers through a mechanism, which involves multiple TLR/MyD88-dependent signalling pathways, in particular TLR2, TLR4 and TLR6. TLR-biomaterial interactions induce the expression of activation markers and pro-inflammatory cytokines and are sufficient to confer on DCs the ability to activate antigen-specific T cells. This happens through a direct biomaterial-DC interaction although, for degradable biomaterials, soluble polymer molecules can also alter DC function. Finally, the engagement of TLRs by biomaterials profoundly alters DC adhesive properties. Our findings could be useful for designing structure-function studies aimed at developing more bioinert materials. Moreover, they could also be exploited to generate biomaterials for studying the molecular mechanisms of TLR signalling and DC activation aiming at fine-tuning desired and pre-determined immune responses.
生物材料在许多与健康相关的应用中得到了应用,从组织再生到抗原递呈系统。然而,生物材料常常引起炎症反应,表明它们深刻地改变了宿主免疫细胞(如树突状细胞(DCs))的内稳态。因此,迫切需要了解生物材料如何影响这些细胞的功能。在这项研究中,我们使用几种小鼠基因敲除模型分析了化学和物理性质不同的生物材料对 DCs 的影响。DCs 通过一种机制感知生物医学聚合物,该机制涉及多个 TLR/MyD88 依赖性信号通路,特别是 TLR2、TLR4 和 TLR6。TLR-生物材料相互作用诱导激活标志物和促炎细胞因子的表达,并足以赋予 DCs 激活抗原特异性 T 细胞的能力。这是通过直接的生物材料-DC 相互作用发生的,尽管对于可降解生物材料,可溶性聚合物分子也可以改变 DC 的功能。最后,生物材料与 TLR 的结合深刻地改变了 DC 的粘附特性。我们的发现可用于设计旨在开发更惰性生物材料的结构-功能研究。此外,它们还可用于生成用于研究 TLR 信号和 DC 激活的分子机制的生物材料,旨在精细调节所需和预定的免疫反应。