Department of Surgery, University of Louisville, Louisville, Kentucky 40292, USA.
J Surg Res. 2011 Jun 15;168(2):179-87. doi: 10.1016/j.jss.2010.02.013. Epub 2010 Mar 6.
Both nitric oxide (NO) and adenosine A1 receptor activation mediate microvascular vasodilation during intestinal glucose absorption. Our overall hypothesis is that adenosine triphosphate (ATP) utilization during glucose absorption would increase adenosine metabolite release, which acts on adenosine A1 receptors to alter endothelial production of NO and/or activate ATP-dependent potassium channels (K(+)(ATP)) to dilate intestinal microvessels.
Intravital videomicroscopy of the rat jejunum was used to record the vascular responses of inflow (termed 1A) arterioles, proximal (p3A), and distal (d3A) premucosal arterioles during exposure to isotonic glucose or mannitol solutions alone or in the presence of the selective nitric oxide synthase (NOS) inhibitor (L-NMMA), an adenosine A1 receptor antagonist (8-cyclopentyl-1,3-dipropylxanthine (DPCPX)), or a K(+)(ATP) channel inhibitor (glibenclamide).
As expected, glucose exposure caused rapid dilation of both p3A and d3A arterioles, while mannitol exposure had no effect on microvascular diameters. Adenosine A1 receptor blockade completely prevented glucose-induced dilation of the premucosal arterioles. NOS inhibition significantly blunted the glucose-induced vasodilation of the premucosal arterioles, but had little effect in the mannitol group. Simultaneous application of both the NOS inhibitor and the adenosine A1 receptor antagonist gave the same reduction in glucose-induced dilation of the premucosal arterioles as the adenosine A1 receptor antagonist alone. Blockade of K(+)(ATP) channels with glibenclamide did not attenuate glucose-induced vasodilation of the premucosal arterioles.
These data suggest that glucose-induced vasodilation of premucosal jejunal arterioles is mediated through adenosine A1 receptors, and NO at least partially mediates the adenosine A1 receptor-induced vasodilation. In addition, K(+)(ATP) channels are not involved in premucosal arteriolar vasodilation during intestinal glucose exposure.
一氧化氮(NO)和腺苷 A1 受体的激活都介导了肠道葡萄糖吸收过程中的微血管舒张。我们的总体假设是,葡萄糖吸收过程中三磷酸腺苷(ATP)的利用会增加腺苷代谢物的释放,从而作用于腺苷 A1 受体,改变内皮细胞一氧化氮的产生和/或激活 ATP 依赖性钾通道(K+(ATP)),从而扩张肠道微血管。
使用大鼠空肠的活体视频显微镜记录在单独暴露于等渗葡萄糖或甘露醇溶液或存在选择性一氧化氮合酶(NOS)抑制剂(L-NMMA)、腺苷 A1 受体拮抗剂(8-环戊基-1,3-二丙基黄嘌呤(DPCPX))或 K+(ATP)通道抑制剂(格列本脲)时,流入(称为 1A)小动脉、近段(p3A)和远段(d3A)黏膜下小动脉的血管反应。
正如预期的那样,葡萄糖暴露迅速扩张了 p3A 和 d3A 小动脉,而甘露醇暴露对微血管直径没有影响。腺苷 A1 受体阻断完全阻止了黏膜下小动脉的葡萄糖诱导扩张。NOS 抑制显著减弱了黏膜下小动脉的葡萄糖诱导血管舒张,但在甘露醇组中作用不大。NOS 抑制剂和腺苷 A1 受体拮抗剂的同时应用对黏膜下小动脉的葡萄糖诱导扩张产生了与腺苷 A1 受体拮抗剂单独应用相同的抑制作用。用格列本脲阻断 K+(ATP)通道并没有减弱黏膜下小动脉的葡萄糖诱导血管舒张。
这些数据表明,黏膜下空肠小动脉的葡萄糖诱导血管舒张是通过腺苷 A1 受体介导的,一氧化氮至少部分介导了腺苷 A1 受体诱导的血管舒张。此外,K+(ATP)通道不参与肠道葡萄糖暴露期间黏膜下小动脉的血管舒张。