Bioengineering Laboratory, Chemical Engineering Department, Superior Institute of Engineering from Porto Polytechnic Institute, Rua Dr António Bernardino de Almeida, 431, 4200-072 Porto, Portugal.
J Hazard Mater. 2010 Aug 15;180(1-3):347-53. doi: 10.1016/j.jhazmat.2010.04.037. Epub 2010 Apr 24.
In the present work, the influence of the competitive effect of inorganic ligands (carbonates, chlorides, fluorides, phosphates, nitrates and sulphates), which can be present in real multi-metal electroplating effluents, on the biosorption of chromium, copper, nickel and zinc ions by yeast cells of Saccharomyces cerevisiae was rationally examined. Additionally, chemical speciation studies allowed optimizing the amount of yeast biomass to be used in the treatment of effluents contaminated with nickel. The applicability of chemical simulation studies was tested using two simulated effluents and validated using one real electroplating effluent, all containing high concentrations of nickel (about 303 micro mol l(-1)). For nickel removal, heat-killed biomass of a brewing flocculent strain of S. cerevisiae was used, in a batch mode. After the implementation of the bioremediation process (12 g dry weight l(-1) of yeast cells), the concentration of nickel in the real effluent (34 micro mol l(-1)) reached the quality criteria for industrial effluents discharge, after the second or third batch according to the U.S.-Environmental Protection Agency and Portuguese law, respectively. This corresponded to a removal of nickel of 89%.
在本工作中,合理地考察了无机配体(碳酸盐、氯化物、氟化物、磷酸盐、硝酸盐和硫酸盐)的竞争效应,这些配体可能存在于实际的多金属电镀废水中,对酵母细胞 Saccharomyces cerevisiae 吸附铬、铜、镍和锌离子的影响。此外,化学形态研究允许优化用于处理含镍废水的酵母生物质的量。使用两种模拟废水和一种实际电镀废水(均含有高浓度的镍(约 303 μmol/L))测试了化学模拟研究的适用性,并进行了验证。对于镍的去除,使用酿酒絮状菌 Saccharomyces cerevisiae 的热灭活生物量,在分批模式下进行。在实施生物修复过程(每升 12 g 干重的酵母细胞)后,根据美国环境保护署和葡萄牙法律,实际废水中的镍浓度(34 μmol/L)分别在第二或第三批后达到工业废水排放的质量标准。这对应于镍的去除率为 89%。