Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany.
Colloids Surf B Biointerfaces. 2010 Aug 1;79(1):284-90. doi: 10.1016/j.colsurfb.2010.04.011. Epub 2010 Apr 21.
In the past years atomic force microscopy (AFM) techniques have turned out to be a suitable and versatile tool for probing the physical properties of microbial cell surfaces. Besides interaction forces, nanomechanical properties can be obtained from force spectroscopic measurements. Analyzing the recorded force curves by applying appropriate models allows the extraction of cell mechanical parameters, e.g. the Young's modulus or the cellular spring constant. In the present work the nanomechanical properties of the baker's yeast Saccharomyces cerevisiae are extensively studied by force spectroscopy using an AFM. Single cells deform purely elastically so that a cellular spring constant can reliably be determined. It is presented, how this spring constant depends on the probing position on the cell, and how it depends on the extracellular osmotic conditions. Investigations aiming a statistically firm description of the nanomechanical behavior of the yeast cell population are conducted. Finally, the informative value of the cellular spring constant as a cell mechanical parameter is critically discussed.
在过去的几年中,原子力显微镜(AFM)技术已成为探测微生物细胞表面物理性质的一种合适且通用的工具。除了相互作用力之外,还可以通过力谱测量获得纳米机械性能。通过应用适当的模型分析记录的力曲线,可以提取细胞力学参数,例如杨氏模量或细胞弹性常数。在本工作中,使用原子力显微镜(AFM)通过力谱学对面包酵母酿酒酵母的纳米力学性质进行了广泛的研究。单细胞的变形是纯弹性的,因此可以可靠地确定细胞弹性常数。介绍了该弹性常数如何取决于细胞上的探测位置,以及如何取决于细胞外的渗透条件。进行了旨在对酵母细胞群体的纳米力学行为进行统计上可靠描述的研究。最后,批判性地讨论了细胞弹性常数作为细胞力学参数的信息价值。