Suppr超能文献

用于扩散张量磁共振成像数据逼近的稳健张量样条

Robust Tensor Splines for Approximation of Diffusion Tensor MRI Data.

作者信息

Barmpoutis Angelos, Vemuri Baba C, Forder John R

机构信息

University of Florida, Gainesville, FL 32611, USA.

出版信息

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2006 Jun 17;2006:86. doi: 10.1109/CVPRW.2006.179.

Abstract

In this paper, we present a novel and robust spline approximation algorithm given a noisy symmetric positive definite (SPD) tensor field. Such tensor fields commonly arise in the field of Medical Imaging in the form of Diffusion Tensor (DT) MRI data sets. We develop a statistically robust algorithm for constructing a tensor product of B-splines - for approximating and interpolating these data - using the Riemannian metric of the manifold of SPD tensors. Our method involves a two step procedure wherein the first step uses Riemannian distances in order to evaluate a tensor spline by computing a weighted intrinsic average of diffusion tensors and the second step involves minimization of the Riemannian distance between the evaluated spline curve and the given data. These two steps are alternated to achieve the desired tensor spline approximation to the given tensor field. We present comparisons of our algorithm with four existing methods of tensor interpolation applied to DT-MRI data from fixed heart slices of a rabbit, and show significantly improved results in the presence of noise and outliers. We also present validation results for our algorithm using synthetically generated noisy tensor field data with outliers. This interpolation work has many applications e.g., in DT-MRI registration, in DT-MRI Atlas construction etc. This research was in part funded by the NIH ROI NS42075 and the Department of Radiology, University of Florida.

摘要

在本文中,给定一个有噪声的对称正定(SPD)张量场,我们提出了一种新颖且稳健的样条逼近算法。此类张量场在医学成像领域中通常以扩散张量(DT)磁共振成像数据集的形式出现。我们开发了一种统计稳健的算法,用于使用SPD张量流形的黎曼度量来构造B样条的张量积,以逼近和插值这些数据。我们的方法涉及一个两步过程,其中第一步使用黎曼距离,通过计算扩散张量的加权内在平均值来评估张量样条,第二步涉及最小化评估的样条曲线与给定数据之间的黎曼距离。这两个步骤交替进行,以实现对给定张量场的所需张量样条逼近。我们将我们的算法与应用于兔子固定心脏切片的DT - MRI数据的四种现有张量插值方法进行了比较,并表明在存在噪声和异常值的情况下结果有显著改善。我们还使用带有异常值的合成生成的噪声张量场数据展示了我们算法的验证结果。这种插值工作有许多应用,例如在DT - MRI配准、DT - MRI图谱构建等方面。本研究部分由美国国立卫生研究院(NIH)ROI NS42075基金以及佛罗里达大学放射科资助。

相似文献

1
Robust Tensor Splines for Approximation of Diffusion Tensor MRI Data.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2006 Jun 17;2006:86. doi: 10.1109/CVPRW.2006.179.
3
Groupwise Registration and Atlas Construction of 4th-Order Tensor Fields Using the ℝ Riemannian Metric.
Med Image Comput Comput Assist Interv. 2009 Oct 1;5761:640-647. doi: 10.1007/978-3-642-04268-3_79.
6
On the averaging of cardiac diffusion tensor MRI data: the effect of distance function selection.
Phys Med Biol. 2016 Nov 7;61(21):7765-7786. doi: 10.1088/0031-9155/61/21/7765. Epub 2016 Oct 18.
7
Using Perturbation theory to reduce noise in diffusion tensor fields.
Med Image Anal. 2009 Aug;13(4):580-97. doi: 10.1016/j.media.2009.05.001. Epub 2009 May 15.
8
Feature-based interpolation of diffusion tensor fields and application to human cardiac DT-MRI.
Med Image Anal. 2012 Feb;16(2):459-81. doi: 10.1016/j.media.2011.11.003. Epub 2011 Nov 17.
9
EXPONENTIAL TENSORS: A FRAMEWORK FOR EFFICIENT HIGHER-ORDER DT-MRI COMPUTATIONS.
Proc IEEE Int Symp Biomed Imaging. 2007 May 15;2007:792-795. doi: 10.1109/isbi.2007.356971.
10
Log-Cholesky filtering of diffusion tensor fields: Impact on noise reduction.
Magn Reson Imaging. 2024 Dec;114:110245. doi: 10.1016/j.mri.2024.110245. Epub 2024 Oct 4.

引用本文的文献

1
Symmetric positive 4th order tensors & their estimation from diffusion weighted MRI.
Inf Process Med Imaging. 2007;20:308-19. doi: 10.1007/978-3-540-73273-0_26.

本文引用的文献

1
Extrapolation of sparse tensor fields: application to the modeling of brain variability.
Inf Process Med Imaging. 2005;19:27-38. doi: 10.1007/11505730_3.
2
Riemannian elasticity: a statistical regularization framework for non-linear registration.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):943-50. doi: 10.1007/11566489_116.
3
Fast and simple calculus on tensors in the log-Euclidean framework.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):115-22. doi: 10.1007/11566465_15.
4
A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from DWI.
Inf Process Med Imaging. 2003 Jul;18:660-71. doi: 10.1007/978-3-540-45087-0_55.
5
A framework for callosal fiber distribution analysis.
Neuroimage. 2002 Nov;17(3):1131-43. doi: 10.1006/nimg.2002.1285.
6
Estimation of the effective self-diffusion tensor from the NMR spin echo.
J Magn Reson B. 1994 Mar;103(3):247-54. doi: 10.1006/jmrb.1994.1037.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验