Barmpoutis Angelos, Vemuri Baba C, Forder John R
University of Florida, Gainesville, FL 32611, USA.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2006 Jun 17;2006:86. doi: 10.1109/CVPRW.2006.179.
In this paper, we present a novel and robust spline approximation algorithm given a noisy symmetric positive definite (SPD) tensor field. Such tensor fields commonly arise in the field of Medical Imaging in the form of Diffusion Tensor (DT) MRI data sets. We develop a statistically robust algorithm for constructing a tensor product of B-splines - for approximating and interpolating these data - using the Riemannian metric of the manifold of SPD tensors. Our method involves a two step procedure wherein the first step uses Riemannian distances in order to evaluate a tensor spline by computing a weighted intrinsic average of diffusion tensors and the second step involves minimization of the Riemannian distance between the evaluated spline curve and the given data. These two steps are alternated to achieve the desired tensor spline approximation to the given tensor field. We present comparisons of our algorithm with four existing methods of tensor interpolation applied to DT-MRI data from fixed heart slices of a rabbit, and show significantly improved results in the presence of noise and outliers. We also present validation results for our algorithm using synthetically generated noisy tensor field data with outliers. This interpolation work has many applications e.g., in DT-MRI registration, in DT-MRI Atlas construction etc. This research was in part funded by the NIH ROI NS42075 and the Department of Radiology, University of Florida.
在本文中,给定一个有噪声的对称正定(SPD)张量场,我们提出了一种新颖且稳健的样条逼近算法。此类张量场在医学成像领域中通常以扩散张量(DT)磁共振成像数据集的形式出现。我们开发了一种统计稳健的算法,用于使用SPD张量流形的黎曼度量来构造B样条的张量积,以逼近和插值这些数据。我们的方法涉及一个两步过程,其中第一步使用黎曼距离,通过计算扩散张量的加权内在平均值来评估张量样条,第二步涉及最小化评估的样条曲线与给定数据之间的黎曼距离。这两个步骤交替进行,以实现对给定张量场的所需张量样条逼近。我们将我们的算法与应用于兔子固定心脏切片的DT - MRI数据的四种现有张量插值方法进行了比较,并表明在存在噪声和异常值的情况下结果有显著改善。我们还使用带有异常值的合成生成的噪声张量场数据展示了我们算法的验证结果。这种插值工作有许多应用,例如在DT - MRI配准、DT - MRI图谱构建等方面。本研究部分由美国国立卫生研究院(NIH)ROI NS42075基金以及佛罗里达大学放射科资助。