Suppr超能文献

一种用于推进基于特征的生态学理论和预测的结构化和动态框架。

A structured and dynamic framework to advance traits-based theory and prediction in ecology.

机构信息

Department of Biology, Colorado State University, Fort Collins, CO 80524, USA.

出版信息

Ecol Lett. 2010 Mar;13(3):267-83. doi: 10.1111/j.1461-0248.2010.01444.x.

Abstract

Predicting changes in community composition and ecosystem function in a rapidly changing world is a major research challenge in ecology. Traits-based approaches have elicited much recent interest, yet individual studies are not advancing a more general, predictive ecology. Significant progress will be facilitated by adopting a coherent theoretical framework comprised of three elements: an underlying trait distribution, a performance filter defining the fitness of traits in different environments, and a dynamic projection of the performance filter along some environmental gradient. This framework allows changes in the trait distribution and associated modifications to community composition or ecosystem function to be predicted across time or space. The structure and dynamics of the performance filter specify two key criteria by which we judge appropriate quantitative methods for testing traits-based hypotheses. Bayesian multilevel models, dynamical systems models and hybrid approaches meet both these criteria and have the potential to meaningfully advance traits-based ecology.

摘要

预测快速变化世界中群落组成和生态系统功能的变化是生态学的主要研究挑战。基于特征的方法引起了人们的极大兴趣,但个别研究并没有推动更具普遍性和预测性的生态学发展。通过采用由三个要素组成的连贯理论框架,将极大地促进这一进展:一个潜在的特征分布、一个在不同环境中定义特征适应性的性能过滤器,以及沿着某个环境梯度对性能过滤器的动态预测。该框架允许预测在时间或空间上特征分布的变化以及相关的群落组成或生态系统功能的改变。性能过滤器的结构和动态指定了我们判断用于检验基于特征的假设的适当定量方法的两个关键标准。贝叶斯多层次模型、动力系统模型和混合方法都满足这两个标准,并有潜力为基于特征的生态学提供有意义的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验