Suppr超能文献

具有局部单倍型簇的种群结构。

Population structure with localized haplotype clusters.

机构信息

Department of Statistics, University of Auckland, Auckland 1142, New Zealand.

出版信息

Genetics. 2010 Aug;185(4):1337-44. doi: 10.1534/genetics.110.116681. Epub 2010 May 10.

Abstract

We propose a multilocus version of F(ST) and a measure of haplotype diversity using localized haplotype clusters. Specifically, we use haplotype clusters identified with BEAGLE, which is a program implementing a hidden Markov model for localized haplotype clustering and performing several functions including inference of haplotype phase. We apply this methodology to HapMap phase 3 data. With this haplotype-cluster approach, African populations have highest diversity and lowest divergence from the ancestral population, East Asian populations have lowest diversity and highest divergence, and other populations (European, Indian, and Mexican) have intermediate levels of diversity and divergence. These relationships accord with expectation based on other studies and accepted models of human history. In contrast, the population-specific F(ST) estimates obtained directly from single-nucleotide polymorphisms (SNPs) do not reflect such expected relationships. We show that ascertainment bias of SNPs has less impact on the proposed haplotype-cluster-based F(ST) than on the SNP-based version, which provides a potential explanation for these results. Thus, these new measures of F(ST) and haplotype-cluster diversity provide an important new tool for population genetic analysis of high-density SNP data.

摘要

我们提出了一种基于多位点的 F(ST)和基于局部单倍型簇的单倍型多样性度量方法。具体来说,我们使用了 BEAGLE 识别的单倍型簇,这是一个用于局部单倍型聚类的隐马尔可夫模型的程序,并执行了包括单倍型相位推断在内的多个功能。我们将这种方法应用于 HapMap 第三阶段的数据。通过这种单倍型聚类方法,非洲人群具有最高的多样性和与祖先群体最低的分歧,东亚人群具有最低的多样性和最高的分歧,而其他人群(欧洲、印度和墨西哥)则具有中等水平的多样性和分歧。这些关系与基于其他研究和人类历史公认模型的预期相符。相比之下,直接从单核苷酸多态性(SNP)获得的特定于群体的 F(ST)估计值并不反映这种预期关系。我们表明,SNP 的确认偏差对基于单倍型聚类的 F(ST)的影响小于基于 SNP 的版本,这为这些结果提供了一个潜在的解释。因此,这些新的 F(ST)和单倍型聚类多样性度量方法为基于高密度 SNP 数据的群体遗传分析提供了一个重要的新工具。

相似文献

1
Population structure with localized haplotype clusters.
Genetics. 2010 Aug;185(4):1337-44. doi: 10.1534/genetics.110.116681. Epub 2010 May 10.
2
HaplotypeCN: copy number haplotype inference with Hidden Markov Model and localized haplotype clustering.
PLoS One. 2014 May 21;9(5):e96841. doi: 10.1371/journal.pone.0096841. eCollection 2014.
3
A spatial haplotype copying model with applications to genotype imputation.
J Comput Biol. 2015 May;22(5):451-62. doi: 10.1089/cmb.2014.0151. Epub 2014 Dec 19.
7
Toward a more uniform sampling of human genetic diversity: a survey of worldwide populations by high-density genotyping.
Genomics. 2010 Oct;96(4):199-210. doi: 10.1016/j.ygeno.2010.07.004. Epub 2010 Jul 16.
8
Recombination networks as genetic markers in a human variation study of the Old World.
Hum Genet. 2012 Apr;131(4):601-13. doi: 10.1007/s00439-011-1104-8. Epub 2011 Oct 18.
9
Hap-seqX: expedite algorithm for haplotype phasing with imputation using sequence data.
Gene. 2013 Apr 10;518(1):2-6. doi: 10.1016/j.gene.2012.11.093. Epub 2012 Dec 23.

引用本文的文献

1
Accuracy of genotype imputation based on reference population size and marker density in Hanwoo cattle.
J Anim Sci Technol. 2021 Nov;63(6):1232-1246. doi: 10.5187/jast.2021.e117. Epub 2021 Nov 30.
4
imputeqc: an R package for assessing imputation quality of genotypes and optimizing imputation parameters.
BMC Bioinformatics. 2020 Jul 24;21(Suppl 12):304. doi: 10.1186/s12859-020-03589-0.
5
Modeling coverage gaps in haplotype frequencies via Bayesian inference to improve stem cell donor selection.
Immunogenetics. 2018 May;70(5):279-292. doi: 10.1007/s00251-017-1040-4. Epub 2017 Nov 9.
6
A Unified Characterization of Population Structure and Relatedness.
Genetics. 2017 Aug;206(4):2085-2103. doi: 10.1534/genetics.116.198424. Epub 2017 May 26.
7
Estimating F-statistics: A historical view.
Philos Sci. 2012 Dec;79(5):637-643. doi: 10.1086/667904.
8
Impact of genetic similarity on imputation accuracy.
BMC Genet. 2015 Jul 22;16:90. doi: 10.1186/s12863-015-0248-2.
9
Genome Scan for Selection in Structured Layer Chicken Populations Exploiting Linkage Disequilibrium Information.
PLoS One. 2015 Jul 7;10(7):e0130497. doi: 10.1371/journal.pone.0130497. eCollection 2015.

本文引用的文献

1
ESTIMATING F-STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE.
Evolution. 1984 Nov;38(6):1358-1370. doi: 10.1111/j.1558-5646.1984.tb05657.x.
2
The genetical structure of populations.
Ann Eugen. 1951 Mar;15(4):323-54. doi: 10.1111/j.1469-1809.1949.tb02451.x.
3
Genome-wide scans for footprints of natural selection.
Philos Trans R Soc Lond B Biol Sci. 2010 Jan 12;365(1537):185-205. doi: 10.1098/rstb.2009.0219.
5
Non-Darwinian estimation: my ancestors, my genes' ancestors.
Genome Res. 2009 May;19(5):703-10. doi: 10.1101/gr.076539.108.
6
Characterization of six human disease-associated inversion polymorphisms.
Hum Mol Genet. 2009 Jul 15;18(14):2555-66. doi: 10.1093/hmg/ddp187. Epub 2009 Apr 21.
7
Global distribution of genomic diversity underscores rich complex history of continental human populations.
Genome Res. 2009 May;19(5):795-803. doi: 10.1101/gr.088898.108. Epub 2009 Feb 13.
8
A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals.
Am J Hum Genet. 2009 Feb;84(2):210-23. doi: 10.1016/j.ajhg.2009.01.005. Epub 2009 Feb 5.
10
Genotype, haplotype and copy-number variation in worldwide human populations.
Nature. 2008 Feb 21;451(7181):998-1003. doi: 10.1038/nature06742.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验